#include "genetic/explicitsimulation.h" #include "genetic/operator.h" #include "genetic/fitnessfunction.h" #include "genetic/phenotype.h" #include #include #include #include using namespace Bu; Genetic::ExplicitSimulation::ExplicitSimulation( Genetic::Operator *pOper, Genetic::FitnessFunction *pFunc, int iThreads, int iPopSize, float fKeep, float fRandom, bool bKeepBest, bool bRecalcSurvivors ) : pOper( pOper ), iPopSize( iPopSize ), fKeep( fKeep ), fRandom( fRandom ), bKeepBest( bKeepBest ), bRecalcSurvivors( bRecalcSurvivors ), bRunning( true ) { for( int j = 0; j < iPopSize; j++ ) { xPop.addPhenotype( pOper->random() ); } if( iThreads < 1 ) iThreads = 1; int iId = 0; lProcessor.append( new Processor( *this, pFunc, qWork, iId++ ) ); while( lProcessor.getSize() < iThreads ) lProcessor.append( new Processor( *this, pFunc->clone(), qWork, iId++ ) ); for( ProcessorList::iterator i = lProcessor.begin(); i; i++ ) (*i)->start(); updateFitness(); } Genetic::ExplicitSimulation::~ExplicitSimulation() { delete pOper; setRunning( false ); qWork.unblockAll(); for( ProcessorList::iterator i = lProcessor.begin(); i; i++ ) { (*i)->join(); delete *i; } } void Genetic::ExplicitSimulation::timestep() { PhenotypeList lNew; int iChildren = iPopSize*(1.0-fKeep-fRandom); // Create children for( int j = 0; j < iChildren; j++ ) { PhenotypeList lParents; for( int k = 0; k < pOper->parentCount(); k++ ) lParents.append( xPop.getPhenotype( selectWeighted() ) ); lNew.append( pOper->mate( lParents ) ); } // Select phenotypes for keeping int iKeep = iPopSize*fKeep; FitnessHash hTempFitness; for( int j = 0; j < iKeep; j++ ) { Genetic::PhenotypeId id = selectWeighted(); mFitness.lock(); lNew.append( xPop.takePhenotype( id ) ); hTempFitness.insert( id, hFitness.get( id ) ); hFitness.erase( id ); dTotalFitness -= hTempFitness.get( id ); mFitness.unlock(); } mFitness.lock(); if( bKeepBest && hFitness.has( uMaxFitness ) ) { lNew.append( xPop.takePhenotype( uMaxFitness ) ); hTempFitness.insert( uMaxFitness, hFitness.get( uMaxFitness ) ); hFitness.erase( uMaxFitness ); dTotalFitness -= hTempFitness.get( uMaxFitness ); } mFitness.unlock(); // Fill in the remainder with random phenotypes while( lNew.getSize() < iPopSize ) { lNew.append( pOper->random() ); } // Refill the population mFitness.lock(); if( bRecalcSurvivors ) hFitness.clear(); else hFitness = hTempFitness; mFitness.unlock(); xPop.clear(); xPop.timestep(); for( PhenotypeList::iterator i = lNew.begin(); i; i++ ) { xPop.addPhenotype( *i ); } updateFitness(); } Genetic::PhenotypeId Genetic::ExplicitSimulation::selectWeighted() { Bu::MutexLocker ml( mFitness ); double dSel = Bu::Random::randNorm()*dTotalFitness; double dRun = 0.0; for( FitnessHash::iterator i = hFitness.begin(); i; i++ ) { dRun += *i; if( dSel < dRun ) return i.getKey(); } sio << "Genetic::ExplicitSimulation::selectWeighted() - failed, picked max" << sio.nl; sio << " " << dMinFitness << " - " << dMaxFitness << " -- " << dTotalFitness << " > " << dRun << " > " << dSel << sio.nl; abort(); return uMaxFitness; } Genetic::PhenotypeId Genetic::ExplicitSimulation::getMaxFitnessId() const { return uMaxFitness; } Genetic::Phenotype *Genetic::ExplicitSimulation::getMaxFitnessPhenotype() const { return xPop.getPhenotype( uMaxFitness ); } void Genetic::ExplicitSimulation::updateFitness() { mFitness.lock(); dMinFitness = -1.0; dTotalFitness = 0.0; mFitness.unlock(); cWorkDone.lock(); iWorkDone = xPop.getSize(); cWorkDone.unlock(); for( Population::iterator i = xPop.begin(); i; i++ ) { mFitness.lock(); bool bHas = hFitness.has( i.getKey() ); mFitness.unlock(); if( bHas ) { setFitness( i.getKey(), hFitness.get( i.getKey() ) ); cWorkDone.lock(); iWorkDone--; cWorkDone.unlock(); } else { qWork.enqueue( *i ); } } cWorkDone.lock(); if( iWorkDone == 0 ) { cWorkDone.unlock(); return; } while( iWorkDone > 0 ) cWorkDone.wait(); cWorkDone.unlock(); } void Genetic::ExplicitSimulation::setFitness( Genetic::PhenotypeId id, double dFitness ) { Bu::MutexLocker ml( mFitness ); if( dFitness < 0.0 ) dFitness = 0.0; hFitness.insert( id, dFitness ); dTotalFitness += dFitness; if( dMinFitness < 0.0 ) { dMinFitness = dMaxFitness = dFitness; uMaxFitness = id; } else if( dMinFitness > dFitness ) { dMinFitness = dFitness; } else if( dMaxFitness < dFitness ) { dMaxFitness = dFitness; uMaxFitness = id; } } void Genetic::ExplicitSimulation::workDone() { cWorkDone.lock(); iWorkDone--; if( iWorkDone == 0 ) cWorkDone.signal(); cWorkDone.unlock(); } void Genetic::ExplicitSimulation::setRunning( bool b ) { Bu::MutexLocker ml( mRunning ); bRunning = b; } bool Genetic::ExplicitSimulation::isRunning() { Bu::MutexLocker ml( mRunning ); return bRunning; } Genetic::ExplicitSimulation::Processor::Processor( Genetic::ExplicitSimulation &rSim, Genetic::FitnessFunction *pFunc, Genetic::ExplicitSimulation::WorkQueue &rqWork, int iId ) : rSim( rSim ), pFunc( pFunc ), rqWork( rqWork ), iId( iId ) { } Genetic::ExplicitSimulation::Processor::~Processor() { delete pFunc; } void Genetic::ExplicitSimulation::Processor::run() { while( rSim.isRunning() ) { Genetic::Phenotype *pPhen = rqWork.dequeue( true ); if( pPhen == NULL ) continue; double dFitness = (*pFunc)( pPhen ); rSim.setFitness( pPhen->getId(), dFitness ); rSim.workDone(); } }