diff options
author | Mike Buland <eichlan@xagasoft.com> | 2006-11-27 10:13:44 +0000 |
---|---|---|
committer | Mike Buland <eichlan@xagasoft.com> | 2006-11-27 10:13:44 +0000 |
commit | 3025ed54309f793c6afbcbc9a564f71cc741f2ef (patch) | |
tree | b579210f2f894bfeb7562e3339aea58c377c26b7 /src/tqsort.h | |
parent | dd049c4b3bbe6a605e41b043d933c02cb8497968 (diff) | |
download | libbu++-3025ed54309f793c6afbcbc9a564f71cc741f2ef.tar.gz libbu++-3025ed54309f793c6afbcbc9a564f71cc741f2ef.tar.bz2 libbu++-3025ed54309f793c6afbcbc9a564f71cc741f2ef.tar.xz libbu++-3025ed54309f793c6afbcbc9a564f71cc741f2ef.zip |
Added the new OrdHash, check the test file for an example.
Diffstat (limited to 'src/tqsort.h')
-rw-r--r-- | src/tqsort.h | 207 |
1 files changed, 207 insertions, 0 deletions
diff --git a/src/tqsort.h b/src/tqsort.h new file mode 100644 index 0000000..c836b4f --- /dev/null +++ b/src/tqsort.h | |||
@@ -0,0 +1,207 @@ | |||
1 | #ifndef T_QSORT_H | ||
2 | #define T_QSORT_H | ||
3 | |||
4 | #define _QSORT_SWAP(a, b, t) ((void)((t = *a), (*a = *b), (*b = t))) | ||
5 | |||
6 | /* Discontinue quicksort algorithm when partition gets below this size. | ||
7 | This particular magic number was chosen to work best on a Sun 4/260. */ | ||
8 | #define _QSORT_MAX_THRESH 4 | ||
9 | |||
10 | /* Stack node declarations used to store unfulfilled partition obligations | ||
11 | * (inlined in QSORT). | ||
12 | typedef struct { | ||
13 | QSORT_TYPE *_lo, *_hi; | ||
14 | } qsort_stack_node; | ||
15 | */ | ||
16 | |||
17 | /* The next 4 #defines implement a very fast in-line stack abstraction. */ | ||
18 | /* The stack needs log (total_elements) entries (we could even subtract | ||
19 | log(MAX_THRESH)). Since total_elements has type unsigned, we get as | ||
20 | upper bound for log (total_elements): | ||
21 | bits per byte (CHAR_BIT) * sizeof(unsigned). */ | ||
22 | #define _QSORT_STACK_SIZE (8 * sizeof(unsigned)) | ||
23 | #define _QSORT_PUSH(top, low, high) \ | ||
24 | (((top->_lo = (low)), (top->_hi = (high)), ++top)) | ||
25 | #define _QSORT_POP(low, high, top) \ | ||
26 | ((--top, (low = top->_lo), (high = top->_hi))) | ||
27 | #define _QSORT_STACK_NOT_EMPTY (_stack < _top) | ||
28 | |||
29 | |||
30 | /* Order size using quicksort. This implementation incorporates | ||
31 | four optimizations discussed in Sedgewick: | ||
32 | |||
33 | 1. Non-recursive, using an explicit stack of pointer that store the | ||
34 | next array partition to sort. To save time, this maximum amount | ||
35 | of space required to store an array of SIZE_MAX is allocated on the | ||
36 | stack. Assuming a 32-bit (64 bit) integer for size_t, this needs | ||
37 | only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes). | ||
38 | Pretty cheap, actually. | ||
39 | |||
40 | 2. Chose the pivot element using a median-of-three decision tree. | ||
41 | This reduces the probability of selecting a bad pivot value and | ||
42 | eliminates certain extraneous comparisons. | ||
43 | |||
44 | 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving | ||
45 | insertion sort to order the MAX_THRESH items within each partition. | ||
46 | This is a big win, since insertion sort is faster for small, mostly | ||
47 | sorted array segments. | ||
48 | |||
49 | 4. The larger of the two sub-partitions is always pushed onto the | ||
50 | stack first, with the algorithm then concentrating on the | ||
51 | smaller partition. This *guarantees* no more than log (total_elems) | ||
52 | stack size is needed (actually O(1) in this case)! */ | ||
53 | |||
54 | /* The main code starts here... */ | ||
55 | |||
56 | template<typename QSORT_TYPE, typename QSORT_LTT, typename CST> | ||
57 | void tqsort( QSORT_TYPE *QSORT_BASE, int QSORT_NELT ) | ||
58 | { | ||
59 | QSORT_LTT QSORT_LT; | ||
60 | QSORT_TYPE *const _base = (QSORT_BASE); | ||
61 | const unsigned _elems = (QSORT_NELT); | ||
62 | QSORT_TYPE _hold; | ||
63 | |||
64 | /* Don't declare two variables of type QSORT_TYPE in a single | ||
65 | * statement: eg `TYPE a, b;', in case if TYPE is a pointer, | ||
66 | * expands to `type* a, b;' wich isn't what we want. | ||
67 | */ | ||
68 | |||
69 | if (_elems > _QSORT_MAX_THRESH) { | ||
70 | QSORT_TYPE *_lo = _base; | ||
71 | QSORT_TYPE *_hi = _lo + _elems - 1; | ||
72 | struct { | ||
73 | QSORT_TYPE *_hi; QSORT_TYPE *_lo; | ||
74 | } _stack[_QSORT_STACK_SIZE], *_top = _stack + 1; | ||
75 | |||
76 | while (_QSORT_STACK_NOT_EMPTY) { | ||
77 | QSORT_TYPE *_left_ptr; QSORT_TYPE *_right_ptr; | ||
78 | |||
79 | /* Select median value from among LO, MID, and HI. Rearrange | ||
80 | LO and HI so the three values are sorted. This lowers the | ||
81 | probability of picking a pathological pivot value and | ||
82 | skips a comparison for both the LEFT_PTR and RIGHT_PTR in | ||
83 | the while loops. */ | ||
84 | |||
85 | QSORT_TYPE *_mid = _lo + ((_hi - _lo) >> 1); | ||
86 | |||
87 | if (QSORT_LT ((CST)(_mid), (CST)(_lo))) | ||
88 | _QSORT_SWAP (_mid, _lo, _hold); | ||
89 | if (QSORT_LT ((CST)(_hi), (CST)(_mid))) | ||
90 | _QSORT_SWAP (_mid, _hi, _hold); | ||
91 | else | ||
92 | goto _jump_over; | ||
93 | if (QSORT_LT ((CST)(_mid), (CST)(_lo))) | ||
94 | _QSORT_SWAP (_mid, _lo, _hold); | ||
95 | _jump_over:; | ||
96 | |||
97 | _left_ptr = _lo + 1; | ||
98 | _right_ptr = _hi - 1; | ||
99 | |||
100 | /* Here's the famous ``collapse the walls'' section of quicksort. | ||
101 | Gotta like those tight inner loops! They are the main reason | ||
102 | that this algorithm runs much faster than others. */ | ||
103 | do { | ||
104 | while (QSORT_LT ((CST)(_left_ptr), (CST)(_mid))) | ||
105 | ++_left_ptr; | ||
106 | |||
107 | while (QSORT_LT ((CST)(_mid), (CST)(_right_ptr))) | ||
108 | --_right_ptr; | ||
109 | |||
110 | if (_left_ptr < _right_ptr) { | ||
111 | _QSORT_SWAP (_left_ptr, _right_ptr, _hold); | ||
112 | if (_mid == _left_ptr) | ||
113 | _mid = _right_ptr; | ||
114 | else if (_mid == _right_ptr) | ||
115 | _mid = _left_ptr; | ||
116 | ++_left_ptr; | ||
117 | --_right_ptr; | ||
118 | } | ||
119 | else if (_left_ptr == _right_ptr) { | ||
120 | ++_left_ptr; | ||
121 | --_right_ptr; | ||
122 | break; | ||
123 | } | ||
124 | } while (_left_ptr <= _right_ptr); | ||
125 | |||
126 | /* Set up pointers for next iteration. First determine whether | ||
127 | left and right partitions are below the threshold size. If so, | ||
128 | ignore one or both. Otherwise, push the larger partition's | ||
129 | bounds on the stack and continue sorting the smaller one. */ | ||
130 | |||
131 | if (_right_ptr - _lo <= _QSORT_MAX_THRESH) { | ||
132 | if (_hi - _left_ptr <= _QSORT_MAX_THRESH) | ||
133 | /* Ignore both small partitions. */ | ||
134 | _QSORT_POP (_lo, _hi, _top); | ||
135 | else | ||
136 | /* Ignore small left partition. */ | ||
137 | _lo = _left_ptr; | ||
138 | } | ||
139 | else if (_hi - _left_ptr <= _QSORT_MAX_THRESH) | ||
140 | /* Ignore small right partition. */ | ||
141 | _hi = _right_ptr; | ||
142 | else if (_right_ptr - _lo > _hi - _left_ptr) { | ||
143 | /* Push larger left partition indices. */ | ||
144 | _QSORT_PUSH (_top, _lo, _right_ptr); | ||
145 | _lo = _left_ptr; | ||
146 | } | ||
147 | else { | ||
148 | /* Push larger right partition indices. */ | ||
149 | _QSORT_PUSH (_top, _left_ptr, _hi); | ||
150 | _hi = _right_ptr; | ||
151 | } | ||
152 | } | ||
153 | } | ||
154 | |||
155 | /* Once the BASE array is partially sorted by quicksort the rest | ||
156 | is completely sorted using insertion sort, since this is efficient | ||
157 | for partitions below MAX_THRESH size. BASE points to the | ||
158 | beginning of the array to sort, and END_PTR points at the very | ||
159 | last element in the array (*not* one beyond it!). */ | ||
160 | |||
161 | { | ||
162 | QSORT_TYPE *const _end_ptr = _base + _elems - 1; | ||
163 | QSORT_TYPE *_tmp_ptr = _base; | ||
164 | register QSORT_TYPE *_run_ptr; | ||
165 | QSORT_TYPE *_thresh; | ||
166 | |||
167 | _thresh = _base + _QSORT_MAX_THRESH; | ||
168 | if (_thresh > _end_ptr) | ||
169 | _thresh = _end_ptr; | ||
170 | |||
171 | /* Find smallest element in first threshold and place it at the | ||
172 | array's beginning. This is the smallest array element, | ||
173 | and the operation speeds up insertion sort's inner loop. */ | ||
174 | |||
175 | for (_run_ptr = _tmp_ptr + 1; _run_ptr <= _thresh; ++_run_ptr) | ||
176 | if (QSORT_LT ((CST)(_run_ptr), (CST)(_tmp_ptr))) | ||
177 | _tmp_ptr = _run_ptr; | ||
178 | |||
179 | if (_tmp_ptr != _base) | ||
180 | _QSORT_SWAP (_tmp_ptr, _base, _hold); | ||
181 | |||
182 | /* Insertion sort, running from left-hand-side | ||
183 | * up to right-hand-side. */ | ||
184 | |||
185 | _run_ptr = _base + 1; | ||
186 | while (++_run_ptr <= _end_ptr) { | ||
187 | _tmp_ptr = _run_ptr - 1; | ||
188 | while (QSORT_LT ((CST)(_run_ptr), (CST)(_tmp_ptr))) | ||
189 | --_tmp_ptr; | ||
190 | |||
191 | ++_tmp_ptr; | ||
192 | if (_tmp_ptr != _run_ptr) { | ||
193 | QSORT_TYPE *_trav = _run_ptr + 1; | ||
194 | while (--_trav >= _run_ptr) { | ||
195 | QSORT_TYPE *_hi; QSORT_TYPE *_lo; | ||
196 | _hold = *_trav; | ||
197 | |||
198 | for (_hi = _lo = _trav; --_lo >= _tmp_ptr; _hi = _lo) | ||
199 | *_hi = *_lo; | ||
200 | *_hi = _hold; | ||
201 | } | ||
202 | } | ||
203 | } | ||
204 | } | ||
205 | } | ||
206 | |||
207 | #endif | ||