diff options
Diffstat (limited to 'src/tests/qsort.cpp')
-rw-r--r-- | src/tests/qsort.cpp | 228 |
1 files changed, 0 insertions, 228 deletions
diff --git a/src/tests/qsort.cpp b/src/tests/qsort.cpp deleted file mode 100644 index 28c6f03..0000000 --- a/src/tests/qsort.cpp +++ /dev/null | |||
@@ -1,228 +0,0 @@ | |||
1 | #define _QSORT_SWAP(a, b, t) ((void)((t = *a), (*a = *b), (*b = t))) | ||
2 | |||
3 | /* Discontinue quicksort algorithm when partition gets below this size. | ||
4 | This particular magic number was chosen to work best on a Sun 4/260. */ | ||
5 | #define _QSORT_MAX_THRESH 4 | ||
6 | |||
7 | /* Stack node declarations used to store unfulfilled partition obligations | ||
8 | * (inlined in QSORT). | ||
9 | typedef struct { | ||
10 | QSORT_TYPE *_lo, *_hi; | ||
11 | } qsort_stack_node; | ||
12 | */ | ||
13 | |||
14 | /* The next 4 #defines implement a very fast in-line stack abstraction. */ | ||
15 | /* The stack needs log (total_elements) entries (we could even subtract | ||
16 | log(MAX_THRESH)). Since total_elements has type unsigned, we get as | ||
17 | upper bound for log (total_elements): | ||
18 | bits per byte (CHAR_BIT) * sizeof(unsigned). */ | ||
19 | #define _QSORT_STACK_SIZE (8 * sizeof(unsigned)) | ||
20 | #define _QSORT_PUSH(top, low, high) \ | ||
21 | (((top->_lo = (low)), (top->_hi = (high)), ++top)) | ||
22 | #define _QSORT_POP(low, high, top) \ | ||
23 | ((--top, (low = top->_lo), (high = top->_hi))) | ||
24 | #define _QSORT_STACK_NOT_EMPTY (_stack < _top) | ||
25 | |||
26 | |||
27 | /* Order size using quicksort. This implementation incorporates | ||
28 | four optimizations discussed in Sedgewick: | ||
29 | |||
30 | 1. Non-recursive, using an explicit stack of pointer that store the | ||
31 | next array partition to sort. To save time, this maximum amount | ||
32 | of space required to store an array of SIZE_MAX is allocated on the | ||
33 | stack. Assuming a 32-bit (64 bit) integer for size_t, this needs | ||
34 | only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes). | ||
35 | Pretty cheap, actually. | ||
36 | |||
37 | 2. Chose the pivot element using a median-of-three decision tree. | ||
38 | This reduces the probability of selecting a bad pivot value and | ||
39 | eliminates certain extraneous comparisons. | ||
40 | |||
41 | 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving | ||
42 | insertion sort to order the MAX_THRESH items within each partition. | ||
43 | This is a big win, since insertion sort is faster for small, mostly | ||
44 | sorted array segments. | ||
45 | |||
46 | 4. The larger of the two sub-partitions is always pushed onto the | ||
47 | stack first, with the algorithm then concentrating on the | ||
48 | smaller partition. This *guarantees* no more than log (total_elems) | ||
49 | stack size is needed (actually O(1) in this case)! */ | ||
50 | |||
51 | /* The main code starts here... */ | ||
52 | |||
53 | template<typename QSORT_TYPE, typename QSORT_LTT> | ||
54 | void qsrt( QSORT_TYPE *QSORT_BASE, int QSORT_NELT ) | ||
55 | { | ||
56 | QSORT_LTT QSORT_LT; | ||
57 | QSORT_TYPE *const _base = (QSORT_BASE); | ||
58 | const unsigned _elems = (QSORT_NELT); | ||
59 | QSORT_TYPE _hold; | ||
60 | |||
61 | /* Don't declare two variables of type QSORT_TYPE in a single | ||
62 | * statement: eg `TYPE a, b;', in case if TYPE is a pointer, | ||
63 | * expands to `type* a, b;' wich isn't what we want. | ||
64 | */ | ||
65 | |||
66 | if (_elems > _QSORT_MAX_THRESH) { | ||
67 | QSORT_TYPE *_lo = _base; | ||
68 | QSORT_TYPE *_hi = _lo + _elems - 1; | ||
69 | struct { | ||
70 | QSORT_TYPE *_hi; QSORT_TYPE *_lo; | ||
71 | } _stack[_QSORT_STACK_SIZE], *_top = _stack + 1; | ||
72 | |||
73 | while (_QSORT_STACK_NOT_EMPTY) { | ||
74 | QSORT_TYPE *_left_ptr; QSORT_TYPE *_right_ptr; | ||
75 | |||
76 | /* Select median value from among LO, MID, and HI. Rearrange | ||
77 | LO and HI so the three values are sorted. This lowers the | ||
78 | probability of picking a pathological pivot value and | ||
79 | skips a comparison for both the LEFT_PTR and RIGHT_PTR in | ||
80 | the while loops. */ | ||
81 | |||
82 | QSORT_TYPE *_mid = _lo + ((_hi - _lo) >> 1); | ||
83 | |||
84 | if (QSORT_LT (_mid, _lo)) | ||
85 | _QSORT_SWAP (_mid, _lo, _hold); | ||
86 | if (QSORT_LT (_hi, _mid)) | ||
87 | _QSORT_SWAP (_mid, _hi, _hold); | ||
88 | else | ||
89 | goto _jump_over; | ||
90 | if (QSORT_LT (_mid, _lo)) | ||
91 | _QSORT_SWAP (_mid, _lo, _hold); | ||
92 | _jump_over:; | ||
93 | |||
94 | _left_ptr = _lo + 1; | ||
95 | _right_ptr = _hi - 1; | ||
96 | |||
97 | /* Here's the famous ``collapse the walls'' section of quicksort. | ||
98 | Gotta like those tight inner loops! They are the main reason | ||
99 | that this algorithm runs much faster than others. */ | ||
100 | do { | ||
101 | while (QSORT_LT (_left_ptr, _mid)) | ||
102 | ++_left_ptr; | ||
103 | |||
104 | while (QSORT_LT (_mid, _right_ptr)) | ||
105 | --_right_ptr; | ||
106 | |||
107 | if (_left_ptr < _right_ptr) { | ||
108 | _QSORT_SWAP (_left_ptr, _right_ptr, _hold); | ||
109 | if (_mid == _left_ptr) | ||
110 | _mid = _right_ptr; | ||
111 | else if (_mid == _right_ptr) | ||
112 | _mid = _left_ptr; | ||
113 | ++_left_ptr; | ||
114 | --_right_ptr; | ||
115 | } | ||
116 | else if (_left_ptr == _right_ptr) { | ||
117 | ++_left_ptr; | ||
118 | --_right_ptr; | ||
119 | break; | ||
120 | } | ||
121 | } while (_left_ptr <= _right_ptr); | ||
122 | |||
123 | /* Set up pointers for next iteration. First determine whether | ||
124 | left and right partitions are below the threshold size. If so, | ||
125 | ignore one or both. Otherwise, push the larger partition's | ||
126 | bounds on the stack and continue sorting the smaller one. */ | ||
127 | |||
128 | if (_right_ptr - _lo <= _QSORT_MAX_THRESH) { | ||
129 | if (_hi - _left_ptr <= _QSORT_MAX_THRESH) | ||
130 | /* Ignore both small partitions. */ | ||
131 | _QSORT_POP (_lo, _hi, _top); | ||
132 | else | ||
133 | /* Ignore small left partition. */ | ||
134 | _lo = _left_ptr; | ||
135 | } | ||
136 | else if (_hi - _left_ptr <= _QSORT_MAX_THRESH) | ||
137 | /* Ignore small right partition. */ | ||
138 | _hi = _right_ptr; | ||
139 | else if (_right_ptr - _lo > _hi - _left_ptr) { | ||
140 | /* Push larger left partition indices. */ | ||
141 | _QSORT_PUSH (_top, _lo, _right_ptr); | ||
142 | _lo = _left_ptr; | ||
143 | } | ||
144 | else { | ||
145 | /* Push larger right partition indices. */ | ||
146 | _QSORT_PUSH (_top, _left_ptr, _hi); | ||
147 | _hi = _right_ptr; | ||
148 | } | ||
149 | } | ||
150 | } | ||
151 | |||
152 | /* Once the BASE array is partially sorted by quicksort the rest | ||
153 | is completely sorted using insertion sort, since this is efficient | ||
154 | for partitions below MAX_THRESH size. BASE points to the | ||
155 | beginning of the array to sort, and END_PTR points at the very | ||
156 | last element in the array (*not* one beyond it!). */ | ||
157 | |||
158 | { | ||
159 | QSORT_TYPE *const _end_ptr = _base + _elems - 1; | ||
160 | QSORT_TYPE *_tmp_ptr = _base; | ||
161 | register QSORT_TYPE *_run_ptr; | ||
162 | QSORT_TYPE *_thresh; | ||
163 | |||
164 | _thresh = _base + _QSORT_MAX_THRESH; | ||
165 | if (_thresh > _end_ptr) | ||
166 | _thresh = _end_ptr; | ||
167 | |||
168 | /* Find smallest element in first threshold and place it at the | ||
169 | array's beginning. This is the smallest array element, | ||
170 | and the operation speeds up insertion sort's inner loop. */ | ||
171 | |||
172 | for (_run_ptr = _tmp_ptr + 1; _run_ptr <= _thresh; ++_run_ptr) | ||
173 | if (QSORT_LT (_run_ptr, _tmp_ptr)) | ||
174 | _tmp_ptr = _run_ptr; | ||
175 | |||
176 | if (_tmp_ptr != _base) | ||
177 | _QSORT_SWAP (_tmp_ptr, _base, _hold); | ||
178 | |||
179 | /* Insertion sort, running from left-hand-side | ||
180 | * up to right-hand-side. */ | ||
181 | |||
182 | _run_ptr = _base + 1; | ||
183 | while (++_run_ptr <= _end_ptr) { | ||
184 | _tmp_ptr = _run_ptr - 1; | ||
185 | while (QSORT_LT (_run_ptr, _tmp_ptr)) | ||
186 | --_tmp_ptr; | ||
187 | |||
188 | ++_tmp_ptr; | ||
189 | if (_tmp_ptr != _run_ptr) { | ||
190 | QSORT_TYPE *_trav = _run_ptr + 1; | ||
191 | while (--_trav >= _run_ptr) { | ||
192 | QSORT_TYPE *_hi; QSORT_TYPE *_lo; | ||
193 | _hold = *_trav; | ||
194 | |||
195 | for (_hi = _lo = _trav; --_lo >= _tmp_ptr; _hi = _lo) | ||
196 | *_hi = *_lo; | ||
197 | *_hi = _hold; | ||
198 | } | ||
199 | } | ||
200 | } | ||
201 | } | ||
202 | |||
203 | } | ||
204 | |||
205 | |||
206 | struct cc | ||
207 | { | ||
208 | bool operator()( int *a, int *b ) | ||
209 | { | ||
210 | return *a < *b; | ||
211 | } | ||
212 | }; | ||
213 | |||
214 | #include <stdio.h> | ||
215 | |||
216 | int main() | ||
217 | { | ||
218 | int lst[] = { 43, 1, 342, 12, 491, 32, 12321, 32, 3, -3 }; | ||
219 | |||
220 | for( int j = 0; j < 10; j++ ) | ||
221 | printf("%s%d", (j>0)?", ":"", lst[j] ); | ||
222 | printf("\n"); | ||
223 | qsrt<int, cc>( lst, 10 ); | ||
224 | for( int j = 0; j < 10; j++ ) | ||
225 | printf("%s%d", (j>0)?", ":"", lst[j] ); | ||
226 | printf("\n"); | ||
227 | } | ||
228 | |||