diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/hash.h | 46 | ||||
-rw-r--r-- | src/ordhash.cpp | 1 | ||||
-rw-r--r-- | src/ordhash.h | 104 | ||||
-rw-r--r-- | src/tests/ordhash.cpp | 48 | ||||
-rw-r--r-- | src/tests/qsort.cpp | 228 | ||||
-rw-r--r-- | src/tqsort.h | 207 |
6 files changed, 618 insertions, 16 deletions
@@ -92,7 +92,10 @@ public: | |||
92 | void erase() | 92 | void erase() |
93 | { | 93 | { |
94 | if( bFilled ) | 94 | if( bFilled ) |
95 | { | ||
95 | hsh._erase( nPos ); | 96 | hsh._erase( nPos ); |
97 | hsh.onDelete(); | ||
98 | } | ||
96 | } | 99 | } |
97 | 100 | ||
98 | _value operator=( _value nval ) | 101 | _value operator=( _value nval ) |
@@ -101,10 +104,12 @@ public: | |||
101 | { | 104 | { |
102 | hsh.va.destroy( pValue ); | 105 | hsh.va.destroy( pValue ); |
103 | hsh.va.construct( pValue, nval ); | 106 | hsh.va.construct( pValue, nval ); |
107 | hsh.onUpdate(); | ||
104 | } | 108 | } |
105 | else | 109 | else |
106 | { | 110 | { |
107 | hsh.fill( nPos, *pKey, nval, hash ); | 111 | hsh.fill( nPos, *pKey, nval, hash ); |
112 | hsh.onInsert(); | ||
108 | } | 113 | } |
109 | 114 | ||
110 | return nval; | 115 | return nval; |
@@ -174,7 +179,7 @@ public: | |||
174 | return nDeleted; | 179 | return nDeleted; |
175 | } | 180 | } |
176 | 181 | ||
177 | HashProxy<key, value, sizecalc, keyalloc, valuealloc, challoc> operator[]( key k ) | 182 | virtual HashProxy<key, value, sizecalc, keyalloc, valuealloc, challoc> operator[]( key k ) |
178 | { | 183 | { |
179 | uint32_t hash = __calcHashCode( k ); | 184 | uint32_t hash = __calcHashCode( k ); |
180 | bool bFill; | 185 | bool bFill; |
@@ -190,7 +195,7 @@ public: | |||
190 | } | 195 | } |
191 | } | 196 | } |
192 | 197 | ||
193 | void insert( key k, value v ) | 198 | virtual void insert( key k, value v ) |
194 | { | 199 | { |
195 | uint32_t hash = __calcHashCode( k ); | 200 | uint32_t hash = __calcHashCode( k ); |
196 | bool bFill; | 201 | bool bFill; |
@@ -200,14 +205,16 @@ public: | |||
200 | { | 205 | { |
201 | va.destroy( &aValues[nPos] ); | 206 | va.destroy( &aValues[nPos] ); |
202 | va.construct( &aValues[nPos], v ); | 207 | va.construct( &aValues[nPos], v ); |
208 | onUpdate(); | ||
203 | } | 209 | } |
204 | else | 210 | else |
205 | { | 211 | { |
206 | fill( nPos, k, v, hash ); | 212 | fill( nPos, k, v, hash ); |
213 | onInsert(); | ||
207 | } | 214 | } |
208 | } | 215 | } |
209 | 216 | ||
210 | void erase( key k ) | 217 | virtual void erase( key k ) |
211 | { | 218 | { |
212 | uint32_t hash = __calcHashCode( k ); | 219 | uint32_t hash = __calcHashCode( k ); |
213 | bool bFill; | 220 | bool bFill; |
@@ -216,10 +223,11 @@ public: | |||
216 | if( bFill ) | 223 | if( bFill ) |
217 | { | 224 | { |
218 | _erase( nPos ); | 225 | _erase( nPos ); |
226 | onDelete(); | ||
219 | } | 227 | } |
220 | } | 228 | } |
221 | 229 | ||
222 | void clear() | 230 | virtual void clear() |
223 | { | 231 | { |
224 | for( uint32_t j = 0; j < nCapacity; j++ ) | 232 | for( uint32_t j = 0; j < nCapacity; j++ ) |
225 | { | 233 | { |
@@ -228,13 +236,14 @@ public: | |||
228 | { | 236 | { |
229 | va.destroy( &aValues[j] ); | 237 | va.destroy( &aValues[j] ); |
230 | ka.destroy( &aKeys[j] ); | 238 | ka.destroy( &aKeys[j] ); |
239 | onDelete(); | ||
231 | } | 240 | } |
232 | } | 241 | } |
233 | 242 | ||
234 | clearBits(); | 243 | clearBits(); |
235 | } | 244 | } |
236 | 245 | ||
237 | value get( key k ) | 246 | virtual value get( key k ) |
238 | { | 247 | { |
239 | uint32_t hash = __calcHashCode( k ); | 248 | uint32_t hash = __calcHashCode( k ); |
240 | bool bFill; | 249 | bool bFill; |
@@ -253,7 +262,7 @@ public: | |||
253 | } | 262 | } |
254 | } | 263 | } |
255 | 264 | ||
256 | bool has( key k ) | 265 | virtual bool has( key k ) |
257 | { | 266 | { |
258 | bool bFill; | 267 | bool bFill; |
259 | probe( __calcHashCode( k ), k, bFill ); | 268 | probe( __calcHashCode( k ), k, bFill ); |
@@ -338,8 +347,13 @@ public: | |||
338 | return iterator( *this, true ); | 347 | return iterator( *this, true ); |
339 | } | 348 | } |
340 | 349 | ||
341 | private: | 350 | protected: |
342 | void clearBits() | 351 | virtual void onInsert() {} |
352 | virtual void onUpdate() {} | ||
353 | virtual void onDelete() {} | ||
354 | virtual void onReHash() {} | ||
355 | |||
356 | virtual void clearBits() | ||
343 | { | 357 | { |
344 | for( uint32_t j = 0; j < nKeysSize; j++ ) | 358 | for( uint32_t j = 0; j < nKeysSize; j++ ) |
345 | { | 359 | { |
@@ -347,7 +361,7 @@ private: | |||
347 | } | 361 | } |
348 | } | 362 | } |
349 | 363 | ||
350 | void fill( uint32_t loc, key &k, value &v, uint32_t hash ) | 364 | virtual void fill( uint32_t loc, key &k, value &v, uint32_t hash ) |
351 | { | 365 | { |
352 | bFilled[loc/32] |= (1<<(loc%32)); | 366 | bFilled[loc/32] |= (1<<(loc%32)); |
353 | va.construct( &aValues[loc], v ); | 367 | va.construct( &aValues[loc], v ); |
@@ -356,19 +370,19 @@ private: | |||
356 | nFilled++; | 370 | nFilled++; |
357 | } | 371 | } |
358 | 372 | ||
359 | void _erase( uint32_t loc ) | 373 | virtual void _erase( uint32_t loc ) |
360 | { | 374 | { |
361 | bDeleted[loc/32] |= (1<<(loc%32)); | 375 | bDeleted[loc/32] |= (1<<(loc%32)); |
362 | va.destroy( &aValues[loc] ); | 376 | va.destroy( &aValues[loc] ); |
363 | ka.destroy( &aKeys[loc] ); | 377 | ka.destroy( &aKeys[loc] ); |
364 | } | 378 | } |
365 | 379 | ||
366 | std::pair<key,value> getAtPos( uint32_t nPos ) | 380 | virtual std::pair<key,value> getAtPos( uint32_t nPos ) |
367 | { | 381 | { |
368 | return std::pair<key,value>(aKeys[nPos],aValues[nPos]); | 382 | return std::pair<key,value>(aKeys[nPos],aValues[nPos]); |
369 | } | 383 | } |
370 | 384 | ||
371 | uint32_t getFirstPos( bool &bFinished ) | 385 | virtual uint32_t getFirstPos( bool &bFinished ) |
372 | { | 386 | { |
373 | for( uint32_t j = 0; j < nCapacity; j++ ) | 387 | for( uint32_t j = 0; j < nCapacity; j++ ) |
374 | { | 388 | { |
@@ -381,7 +395,7 @@ private: | |||
381 | return 0; | 395 | return 0; |
382 | } | 396 | } |
383 | 397 | ||
384 | uint32_t getNextPos( uint32_t nPos, bool &bFinished ) | 398 | virtual uint32_t getNextPos( uint32_t nPos, bool &bFinished ) |
385 | { | 399 | { |
386 | for( uint32_t j = nPos+1; j < nCapacity; j++ ) | 400 | for( uint32_t j = nPos+1; j < nCapacity; j++ ) |
387 | { | 401 | { |
@@ -488,17 +502,17 @@ private: | |||
488 | ca.deallocate( aOldHashCodes, nOldCapacity ); | 502 | ca.deallocate( aOldHashCodes, nOldCapacity ); |
489 | } | 503 | } |
490 | 504 | ||
491 | bool isFilled( uint32_t loc ) | 505 | virtual bool isFilled( uint32_t loc ) |
492 | { | 506 | { |
493 | return (bFilled[loc/32]&(1<<(loc%32)))!=0; | 507 | return (bFilled[loc/32]&(1<<(loc%32)))!=0; |
494 | } | 508 | } |
495 | 509 | ||
496 | bool isDeleted( uint32_t loc ) | 510 | virtual bool isDeleted( uint32_t loc ) |
497 | { | 511 | { |
498 | return (bDeleted[loc/32]&(1<<(loc%32)))!=0; | 512 | return (bDeleted[loc/32]&(1<<(loc%32)))!=0; |
499 | } | 513 | } |
500 | 514 | ||
501 | private: | 515 | protected: |
502 | uint32_t nCapacity; | 516 | uint32_t nCapacity; |
503 | uint32_t nFilled; | 517 | uint32_t nFilled; |
504 | uint32_t nDeleted; | 518 | uint32_t nDeleted; |
diff --git a/src/ordhash.cpp b/src/ordhash.cpp new file mode 100644 index 0000000..77cbd61 --- /dev/null +++ b/src/ordhash.cpp | |||
@@ -0,0 +1 @@ | |||
#include "ordhash.h" | |||
diff --git a/src/ordhash.h b/src/ordhash.h new file mode 100644 index 0000000..e946f95 --- /dev/null +++ b/src/ordhash.h | |||
@@ -0,0 +1,104 @@ | |||
1 | #ifndef ORD_HASH_H | ||
2 | #define ORD_HASH_H | ||
3 | |||
4 | #include "hash.h" | ||
5 | #include "tqsort.h" | ||
6 | |||
7 | template<typename key, typename value, typename cmpfnc, typename sizecalc = __calcNextTSize_fast, typename keyalloc = std::allocator<key>, typename valuealloc = std::allocator<value>, typename challoc = std::allocator<uint32_t> > | ||
8 | class OrdHash : public Hash<key, value, sizecalc, keyalloc, valuealloc, challoc> | ||
9 | { | ||
10 | public: | ||
11 | OrdHash() : | ||
12 | bSorted( false ), | ||
13 | aData( NULL ) | ||
14 | { | ||
15 | } | ||
16 | |||
17 | virtual ~OrdHash() | ||
18 | { | ||
19 | } | ||
20 | |||
21 | protected: | ||
22 | virtual void invalidate() | ||
23 | { | ||
24 | bSorted = false; | ||
25 | delete[] aData; | ||
26 | aData = NULL; | ||
27 | } | ||
28 | |||
29 | virtual void onInsert() | ||
30 | { | ||
31 | invalidate(); | ||
32 | } | ||
33 | |||
34 | virtual void onUpdate() | ||
35 | { | ||
36 | invalidate(); | ||
37 | } | ||
38 | |||
39 | virtual void onDelete() | ||
40 | { | ||
41 | invalidate(); | ||
42 | } | ||
43 | |||
44 | virtual void onReHash() | ||
45 | { | ||
46 | invalidate(); | ||
47 | } | ||
48 | |||
49 | virtual std::pair<key,value> getAtPos( uint32_t nPos ) | ||
50 | { | ||
51 | return Hash<key, value, sizecalc, keyalloc, valuealloc, challoc>::getAtPos( aData[nPos].nIndex ); | ||
52 | } | ||
53 | |||
54 | virtual void buildIndex() | ||
55 | { | ||
56 | aData = new struct ind[this->nFilled]; | ||
57 | uint32_t k = 0; | ||
58 | for( uint32_t j = 0; j < this->nCapacity; j++ ) | ||
59 | { | ||
60 | if( this->isFilled( j ) ) | ||
61 | { | ||
62 | if( !this->isDeleted( j ) ) | ||
63 | { | ||
64 | aData[k].pVal = &(this->aValues[j]); | ||
65 | aData[k].nIndex = j; | ||
66 | k++; | ||
67 | } | ||
68 | } | ||
69 | } | ||
70 | |||
71 | tqsort<typename OrdHash<key, value, cmpfnc, sizecalc, keyalloc, valuealloc, challoc>::ind, cmpfnc, value **>( aData, this->nFilled ); | ||
72 | |||
73 | bSorted = true; | ||
74 | } | ||
75 | |||
76 | virtual uint32_t getFirstPos( bool &bFinished ) | ||
77 | { | ||
78 | if( bSorted == false ) | ||
79 | buildIndex(); | ||
80 | |||
81 | return 0; | ||
82 | } | ||
83 | |||
84 | virtual uint32_t getNextPos( uint32_t nPos, bool &bFinished ) | ||
85 | { | ||
86 | if( nPos+1 >= this->nFilled ) | ||
87 | { | ||
88 | bFinished = true; | ||
89 | return 0; | ||
90 | } | ||
91 | return ++nPos; | ||
92 | } | ||
93 | public: | ||
94 | typedef struct ind | ||
95 | { | ||
96 | value *pVal; | ||
97 | uint32_t nIndex; | ||
98 | } ind; | ||
99 | private: | ||
100 | bool bSorted; | ||
101 | ind *aData; | ||
102 | }; | ||
103 | |||
104 | #endif | ||
diff --git a/src/tests/ordhash.cpp b/src/tests/ordhash.cpp new file mode 100644 index 0000000..f1d96ec --- /dev/null +++ b/src/tests/ordhash.cpp | |||
@@ -0,0 +1,48 @@ | |||
1 | #include "ordhash.h" | ||
2 | #include <string> | ||
3 | |||
4 | typedef struct eldef | ||
5 | { | ||
6 | eldef( int a, int b, const std::string &c ) : | ||
7 | id( a ), nSequence( b ), sName( c ) {} | ||
8 | int id; | ||
9 | int nSequence; | ||
10 | std::string sName; | ||
11 | } eldef; | ||
12 | |||
13 | struct seqcmp | ||
14 | { | ||
15 | bool operator()( eldef **a, eldef **b ) | ||
16 | { | ||
17 | return (*a)->nSequence < (*b)->nSequence; | ||
18 | } | ||
19 | }; | ||
20 | |||
21 | struct namcmp | ||
22 | { | ||
23 | bool operator()( eldef **a, eldef **b ) | ||
24 | { | ||
25 | return (*a)->sName < (*b)->sName; | ||
26 | } | ||
27 | }; | ||
28 | |||
29 | typedef OrdHash<int, eldef, seqcmp> AHash; | ||
30 | //typedef OrdHash<int, eldef, namcmp> AHash; | ||
31 | |||
32 | int main() | ||
33 | { | ||
34 | AHash hsh; | ||
35 | hsh[1] = eldef( 0, 43, "Bob"); | ||
36 | hsh[4] = eldef( 1, 443, "Abby"); | ||
37 | hsh[2] = eldef( 2, 1, "Name"); | ||
38 | hsh[5] = eldef( 3, 0, "Catagory"); | ||
39 | hsh[32] = eldef( 4, 12, "Epilogue"); | ||
40 | |||
41 | for( AHash::iterator i = hsh.begin(); i != hsh.end(); i++ ) | ||
42 | { | ||
43 | eldef e = (*i).second; | ||
44 | printf("%d, %d, %s\n", e.id, e.nSequence, e.sName.c_str() ); | ||
45 | } | ||
46 | |||
47 | } | ||
48 | |||
diff --git a/src/tests/qsort.cpp b/src/tests/qsort.cpp new file mode 100644 index 0000000..28c6f03 --- /dev/null +++ b/src/tests/qsort.cpp | |||
@@ -0,0 +1,228 @@ | |||
1 | #define _QSORT_SWAP(a, b, t) ((void)((t = *a), (*a = *b), (*b = t))) | ||
2 | |||
3 | /* Discontinue quicksort algorithm when partition gets below this size. | ||
4 | This particular magic number was chosen to work best on a Sun 4/260. */ | ||
5 | #define _QSORT_MAX_THRESH 4 | ||
6 | |||
7 | /* Stack node declarations used to store unfulfilled partition obligations | ||
8 | * (inlined in QSORT). | ||
9 | typedef struct { | ||
10 | QSORT_TYPE *_lo, *_hi; | ||
11 | } qsort_stack_node; | ||
12 | */ | ||
13 | |||
14 | /* The next 4 #defines implement a very fast in-line stack abstraction. */ | ||
15 | /* The stack needs log (total_elements) entries (we could even subtract | ||
16 | log(MAX_THRESH)). Since total_elements has type unsigned, we get as | ||
17 | upper bound for log (total_elements): | ||
18 | bits per byte (CHAR_BIT) * sizeof(unsigned). */ | ||
19 | #define _QSORT_STACK_SIZE (8 * sizeof(unsigned)) | ||
20 | #define _QSORT_PUSH(top, low, high) \ | ||
21 | (((top->_lo = (low)), (top->_hi = (high)), ++top)) | ||
22 | #define _QSORT_POP(low, high, top) \ | ||
23 | ((--top, (low = top->_lo), (high = top->_hi))) | ||
24 | #define _QSORT_STACK_NOT_EMPTY (_stack < _top) | ||
25 | |||
26 | |||
27 | /* Order size using quicksort. This implementation incorporates | ||
28 | four optimizations discussed in Sedgewick: | ||
29 | |||
30 | 1. Non-recursive, using an explicit stack of pointer that store the | ||
31 | next array partition to sort. To save time, this maximum amount | ||
32 | of space required to store an array of SIZE_MAX is allocated on the | ||
33 | stack. Assuming a 32-bit (64 bit) integer for size_t, this needs | ||
34 | only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes). | ||
35 | Pretty cheap, actually. | ||
36 | |||
37 | 2. Chose the pivot element using a median-of-three decision tree. | ||
38 | This reduces the probability of selecting a bad pivot value and | ||
39 | eliminates certain extraneous comparisons. | ||
40 | |||
41 | 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving | ||
42 | insertion sort to order the MAX_THRESH items within each partition. | ||
43 | This is a big win, since insertion sort is faster for small, mostly | ||
44 | sorted array segments. | ||
45 | |||
46 | 4. The larger of the two sub-partitions is always pushed onto the | ||
47 | stack first, with the algorithm then concentrating on the | ||
48 | smaller partition. This *guarantees* no more than log (total_elems) | ||
49 | stack size is needed (actually O(1) in this case)! */ | ||
50 | |||
51 | /* The main code starts here... */ | ||
52 | |||
53 | template<typename QSORT_TYPE, typename QSORT_LTT> | ||
54 | void qsrt( QSORT_TYPE *QSORT_BASE, int QSORT_NELT ) | ||
55 | { | ||
56 | QSORT_LTT QSORT_LT; | ||
57 | QSORT_TYPE *const _base = (QSORT_BASE); | ||
58 | const unsigned _elems = (QSORT_NELT); | ||
59 | QSORT_TYPE _hold; | ||
60 | |||
61 | /* Don't declare two variables of type QSORT_TYPE in a single | ||
62 | * statement: eg `TYPE a, b;', in case if TYPE is a pointer, | ||
63 | * expands to `type* a, b;' wich isn't what we want. | ||
64 | */ | ||
65 | |||
66 | if (_elems > _QSORT_MAX_THRESH) { | ||
67 | QSORT_TYPE *_lo = _base; | ||
68 | QSORT_TYPE *_hi = _lo + _elems - 1; | ||
69 | struct { | ||
70 | QSORT_TYPE *_hi; QSORT_TYPE *_lo; | ||
71 | } _stack[_QSORT_STACK_SIZE], *_top = _stack + 1; | ||
72 | |||
73 | while (_QSORT_STACK_NOT_EMPTY) { | ||
74 | QSORT_TYPE *_left_ptr; QSORT_TYPE *_right_ptr; | ||
75 | |||
76 | /* Select median value from among LO, MID, and HI. Rearrange | ||
77 | LO and HI so the three values are sorted. This lowers the | ||
78 | probability of picking a pathological pivot value and | ||
79 | skips a comparison for both the LEFT_PTR and RIGHT_PTR in | ||
80 | the while loops. */ | ||
81 | |||
82 | QSORT_TYPE *_mid = _lo + ((_hi - _lo) >> 1); | ||
83 | |||
84 | if (QSORT_LT (_mid, _lo)) | ||
85 | _QSORT_SWAP (_mid, _lo, _hold); | ||
86 | if (QSORT_LT (_hi, _mid)) | ||
87 | _QSORT_SWAP (_mid, _hi, _hold); | ||
88 | else | ||
89 | goto _jump_over; | ||
90 | if (QSORT_LT (_mid, _lo)) | ||
91 | _QSORT_SWAP (_mid, _lo, _hold); | ||
92 | _jump_over:; | ||
93 | |||
94 | _left_ptr = _lo + 1; | ||
95 | _right_ptr = _hi - 1; | ||
96 | |||
97 | /* Here's the famous ``collapse the walls'' section of quicksort. | ||
98 | Gotta like those tight inner loops! They are the main reason | ||
99 | that this algorithm runs much faster than others. */ | ||
100 | do { | ||
101 | while (QSORT_LT (_left_ptr, _mid)) | ||
102 | ++_left_ptr; | ||
103 | |||
104 | while (QSORT_LT (_mid, _right_ptr)) | ||
105 | --_right_ptr; | ||
106 | |||
107 | if (_left_ptr < _right_ptr) { | ||
108 | _QSORT_SWAP (_left_ptr, _right_ptr, _hold); | ||
109 | if (_mid == _left_ptr) | ||
110 | _mid = _right_ptr; | ||
111 | else if (_mid == _right_ptr) | ||
112 | _mid = _left_ptr; | ||
113 | ++_left_ptr; | ||
114 | --_right_ptr; | ||
115 | } | ||
116 | else if (_left_ptr == _right_ptr) { | ||
117 | ++_left_ptr; | ||
118 | --_right_ptr; | ||
119 | break; | ||
120 | } | ||
121 | } while (_left_ptr <= _right_ptr); | ||
122 | |||
123 | /* Set up pointers for next iteration. First determine whether | ||
124 | left and right partitions are below the threshold size. If so, | ||
125 | ignore one or both. Otherwise, push the larger partition's | ||
126 | bounds on the stack and continue sorting the smaller one. */ | ||
127 | |||
128 | if (_right_ptr - _lo <= _QSORT_MAX_THRESH) { | ||
129 | if (_hi - _left_ptr <= _QSORT_MAX_THRESH) | ||
130 | /* Ignore both small partitions. */ | ||
131 | _QSORT_POP (_lo, _hi, _top); | ||
132 | else | ||
133 | /* Ignore small left partition. */ | ||
134 | _lo = _left_ptr; | ||
135 | } | ||
136 | else if (_hi - _left_ptr <= _QSORT_MAX_THRESH) | ||
137 | /* Ignore small right partition. */ | ||
138 | _hi = _right_ptr; | ||
139 | else if (_right_ptr - _lo > _hi - _left_ptr) { | ||
140 | /* Push larger left partition indices. */ | ||
141 | _QSORT_PUSH (_top, _lo, _right_ptr); | ||
142 | _lo = _left_ptr; | ||
143 | } | ||
144 | else { | ||
145 | /* Push larger right partition indices. */ | ||
146 | _QSORT_PUSH (_top, _left_ptr, _hi); | ||
147 | _hi = _right_ptr; | ||
148 | } | ||
149 | } | ||
150 | } | ||
151 | |||
152 | /* Once the BASE array is partially sorted by quicksort the rest | ||
153 | is completely sorted using insertion sort, since this is efficient | ||
154 | for partitions below MAX_THRESH size. BASE points to the | ||
155 | beginning of the array to sort, and END_PTR points at the very | ||
156 | last element in the array (*not* one beyond it!). */ | ||
157 | |||
158 | { | ||
159 | QSORT_TYPE *const _end_ptr = _base + _elems - 1; | ||
160 | QSORT_TYPE *_tmp_ptr = _base; | ||
161 | register QSORT_TYPE *_run_ptr; | ||
162 | QSORT_TYPE *_thresh; | ||
163 | |||
164 | _thresh = _base + _QSORT_MAX_THRESH; | ||
165 | if (_thresh > _end_ptr) | ||
166 | _thresh = _end_ptr; | ||
167 | |||
168 | /* Find smallest element in first threshold and place it at the | ||
169 | array's beginning. This is the smallest array element, | ||
170 | and the operation speeds up insertion sort's inner loop. */ | ||
171 | |||
172 | for (_run_ptr = _tmp_ptr + 1; _run_ptr <= _thresh; ++_run_ptr) | ||
173 | if (QSORT_LT (_run_ptr, _tmp_ptr)) | ||
174 | _tmp_ptr = _run_ptr; | ||
175 | |||
176 | if (_tmp_ptr != _base) | ||
177 | _QSORT_SWAP (_tmp_ptr, _base, _hold); | ||
178 | |||
179 | /* Insertion sort, running from left-hand-side | ||
180 | * up to right-hand-side. */ | ||
181 | |||
182 | _run_ptr = _base + 1; | ||
183 | while (++_run_ptr <= _end_ptr) { | ||
184 | _tmp_ptr = _run_ptr - 1; | ||
185 | while (QSORT_LT (_run_ptr, _tmp_ptr)) | ||
186 | --_tmp_ptr; | ||
187 | |||
188 | ++_tmp_ptr; | ||
189 | if (_tmp_ptr != _run_ptr) { | ||
190 | QSORT_TYPE *_trav = _run_ptr + 1; | ||
191 | while (--_trav >= _run_ptr) { | ||
192 | QSORT_TYPE *_hi; QSORT_TYPE *_lo; | ||
193 | _hold = *_trav; | ||
194 | |||
195 | for (_hi = _lo = _trav; --_lo >= _tmp_ptr; _hi = _lo) | ||
196 | *_hi = *_lo; | ||
197 | *_hi = _hold; | ||
198 | } | ||
199 | } | ||
200 | } | ||
201 | } | ||
202 | |||
203 | } | ||
204 | |||
205 | |||
206 | struct cc | ||
207 | { | ||
208 | bool operator()( int *a, int *b ) | ||
209 | { | ||
210 | return *a < *b; | ||
211 | } | ||
212 | }; | ||
213 | |||
214 | #include <stdio.h> | ||
215 | |||
216 | int main() | ||
217 | { | ||
218 | int lst[] = { 43, 1, 342, 12, 491, 32, 12321, 32, 3, -3 }; | ||
219 | |||
220 | for( int j = 0; j < 10; j++ ) | ||
221 | printf("%s%d", (j>0)?", ":"", lst[j] ); | ||
222 | printf("\n"); | ||
223 | qsrt<int, cc>( lst, 10 ); | ||
224 | for( int j = 0; j < 10; j++ ) | ||
225 | printf("%s%d", (j>0)?", ":"", lst[j] ); | ||
226 | printf("\n"); | ||
227 | } | ||
228 | |||
diff --git a/src/tqsort.h b/src/tqsort.h new file mode 100644 index 0000000..c836b4f --- /dev/null +++ b/src/tqsort.h | |||
@@ -0,0 +1,207 @@ | |||
1 | #ifndef T_QSORT_H | ||
2 | #define T_QSORT_H | ||
3 | |||
4 | #define _QSORT_SWAP(a, b, t) ((void)((t = *a), (*a = *b), (*b = t))) | ||
5 | |||
6 | /* Discontinue quicksort algorithm when partition gets below this size. | ||
7 | This particular magic number was chosen to work best on a Sun 4/260. */ | ||
8 | #define _QSORT_MAX_THRESH 4 | ||
9 | |||
10 | /* Stack node declarations used to store unfulfilled partition obligations | ||
11 | * (inlined in QSORT). | ||
12 | typedef struct { | ||
13 | QSORT_TYPE *_lo, *_hi; | ||
14 | } qsort_stack_node; | ||
15 | */ | ||
16 | |||
17 | /* The next 4 #defines implement a very fast in-line stack abstraction. */ | ||
18 | /* The stack needs log (total_elements) entries (we could even subtract | ||
19 | log(MAX_THRESH)). Since total_elements has type unsigned, we get as | ||
20 | upper bound for log (total_elements): | ||
21 | bits per byte (CHAR_BIT) * sizeof(unsigned). */ | ||
22 | #define _QSORT_STACK_SIZE (8 * sizeof(unsigned)) | ||
23 | #define _QSORT_PUSH(top, low, high) \ | ||
24 | (((top->_lo = (low)), (top->_hi = (high)), ++top)) | ||
25 | #define _QSORT_POP(low, high, top) \ | ||
26 | ((--top, (low = top->_lo), (high = top->_hi))) | ||
27 | #define _QSORT_STACK_NOT_EMPTY (_stack < _top) | ||
28 | |||
29 | |||
30 | /* Order size using quicksort. This implementation incorporates | ||
31 | four optimizations discussed in Sedgewick: | ||
32 | |||
33 | 1. Non-recursive, using an explicit stack of pointer that store the | ||
34 | next array partition to sort. To save time, this maximum amount | ||
35 | of space required to store an array of SIZE_MAX is allocated on the | ||
36 | stack. Assuming a 32-bit (64 bit) integer for size_t, this needs | ||
37 | only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes). | ||
38 | Pretty cheap, actually. | ||
39 | |||
40 | 2. Chose the pivot element using a median-of-three decision tree. | ||
41 | This reduces the probability of selecting a bad pivot value and | ||
42 | eliminates certain extraneous comparisons. | ||
43 | |||
44 | 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving | ||
45 | insertion sort to order the MAX_THRESH items within each partition. | ||
46 | This is a big win, since insertion sort is faster for small, mostly | ||
47 | sorted array segments. | ||
48 | |||
49 | 4. The larger of the two sub-partitions is always pushed onto the | ||
50 | stack first, with the algorithm then concentrating on the | ||
51 | smaller partition. This *guarantees* no more than log (total_elems) | ||
52 | stack size is needed (actually O(1) in this case)! */ | ||
53 | |||
54 | /* The main code starts here... */ | ||
55 | |||
56 | template<typename QSORT_TYPE, typename QSORT_LTT, typename CST> | ||
57 | void tqsort( QSORT_TYPE *QSORT_BASE, int QSORT_NELT ) | ||
58 | { | ||
59 | QSORT_LTT QSORT_LT; | ||
60 | QSORT_TYPE *const _base = (QSORT_BASE); | ||
61 | const unsigned _elems = (QSORT_NELT); | ||
62 | QSORT_TYPE _hold; | ||
63 | |||
64 | /* Don't declare two variables of type QSORT_TYPE in a single | ||
65 | * statement: eg `TYPE a, b;', in case if TYPE is a pointer, | ||
66 | * expands to `type* a, b;' wich isn't what we want. | ||
67 | */ | ||
68 | |||
69 | if (_elems > _QSORT_MAX_THRESH) { | ||
70 | QSORT_TYPE *_lo = _base; | ||
71 | QSORT_TYPE *_hi = _lo + _elems - 1; | ||
72 | struct { | ||
73 | QSORT_TYPE *_hi; QSORT_TYPE *_lo; | ||
74 | } _stack[_QSORT_STACK_SIZE], *_top = _stack + 1; | ||
75 | |||
76 | while (_QSORT_STACK_NOT_EMPTY) { | ||
77 | QSORT_TYPE *_left_ptr; QSORT_TYPE *_right_ptr; | ||
78 | |||
79 | /* Select median value from among LO, MID, and HI. Rearrange | ||
80 | LO and HI so the three values are sorted. This lowers the | ||
81 | probability of picking a pathological pivot value and | ||
82 | skips a comparison for both the LEFT_PTR and RIGHT_PTR in | ||
83 | the while loops. */ | ||
84 | |||
85 | QSORT_TYPE *_mid = _lo + ((_hi - _lo) >> 1); | ||
86 | |||
87 | if (QSORT_LT ((CST)(_mid), (CST)(_lo))) | ||
88 | _QSORT_SWAP (_mid, _lo, _hold); | ||
89 | if (QSORT_LT ((CST)(_hi), (CST)(_mid))) | ||
90 | _QSORT_SWAP (_mid, _hi, _hold); | ||
91 | else | ||
92 | goto _jump_over; | ||
93 | if (QSORT_LT ((CST)(_mid), (CST)(_lo))) | ||
94 | _QSORT_SWAP (_mid, _lo, _hold); | ||
95 | _jump_over:; | ||
96 | |||
97 | _left_ptr = _lo + 1; | ||
98 | _right_ptr = _hi - 1; | ||
99 | |||
100 | /* Here's the famous ``collapse the walls'' section of quicksort. | ||
101 | Gotta like those tight inner loops! They are the main reason | ||
102 | that this algorithm runs much faster than others. */ | ||
103 | do { | ||
104 | while (QSORT_LT ((CST)(_left_ptr), (CST)(_mid))) | ||
105 | ++_left_ptr; | ||
106 | |||
107 | while (QSORT_LT ((CST)(_mid), (CST)(_right_ptr))) | ||
108 | --_right_ptr; | ||
109 | |||
110 | if (_left_ptr < _right_ptr) { | ||
111 | _QSORT_SWAP (_left_ptr, _right_ptr, _hold); | ||
112 | if (_mid == _left_ptr) | ||
113 | _mid = _right_ptr; | ||
114 | else if (_mid == _right_ptr) | ||
115 | _mid = _left_ptr; | ||
116 | ++_left_ptr; | ||
117 | --_right_ptr; | ||
118 | } | ||
119 | else if (_left_ptr == _right_ptr) { | ||
120 | ++_left_ptr; | ||
121 | --_right_ptr; | ||
122 | break; | ||
123 | } | ||
124 | } while (_left_ptr <= _right_ptr); | ||
125 | |||
126 | /* Set up pointers for next iteration. First determine whether | ||
127 | left and right partitions are below the threshold size. If so, | ||
128 | ignore one or both. Otherwise, push the larger partition's | ||
129 | bounds on the stack and continue sorting the smaller one. */ | ||
130 | |||
131 | if (_right_ptr - _lo <= _QSORT_MAX_THRESH) { | ||
132 | if (_hi - _left_ptr <= _QSORT_MAX_THRESH) | ||
133 | /* Ignore both small partitions. */ | ||
134 | _QSORT_POP (_lo, _hi, _top); | ||
135 | else | ||
136 | /* Ignore small left partition. */ | ||
137 | _lo = _left_ptr; | ||
138 | } | ||
139 | else if (_hi - _left_ptr <= _QSORT_MAX_THRESH) | ||
140 | /* Ignore small right partition. */ | ||
141 | _hi = _right_ptr; | ||
142 | else if (_right_ptr - _lo > _hi - _left_ptr) { | ||
143 | /* Push larger left partition indices. */ | ||
144 | _QSORT_PUSH (_top, _lo, _right_ptr); | ||
145 | _lo = _left_ptr; | ||
146 | } | ||
147 | else { | ||
148 | /* Push larger right partition indices. */ | ||
149 | _QSORT_PUSH (_top, _left_ptr, _hi); | ||
150 | _hi = _right_ptr; | ||
151 | } | ||
152 | } | ||
153 | } | ||
154 | |||
155 | /* Once the BASE array is partially sorted by quicksort the rest | ||
156 | is completely sorted using insertion sort, since this is efficient | ||
157 | for partitions below MAX_THRESH size. BASE points to the | ||
158 | beginning of the array to sort, and END_PTR points at the very | ||
159 | last element in the array (*not* one beyond it!). */ | ||
160 | |||
161 | { | ||
162 | QSORT_TYPE *const _end_ptr = _base + _elems - 1; | ||
163 | QSORT_TYPE *_tmp_ptr = _base; | ||
164 | register QSORT_TYPE *_run_ptr; | ||
165 | QSORT_TYPE *_thresh; | ||
166 | |||
167 | _thresh = _base + _QSORT_MAX_THRESH; | ||
168 | if (_thresh > _end_ptr) | ||
169 | _thresh = _end_ptr; | ||
170 | |||
171 | /* Find smallest element in first threshold and place it at the | ||
172 | array's beginning. This is the smallest array element, | ||
173 | and the operation speeds up insertion sort's inner loop. */ | ||
174 | |||
175 | for (_run_ptr = _tmp_ptr + 1; _run_ptr <= _thresh; ++_run_ptr) | ||
176 | if (QSORT_LT ((CST)(_run_ptr), (CST)(_tmp_ptr))) | ||
177 | _tmp_ptr = _run_ptr; | ||
178 | |||
179 | if (_tmp_ptr != _base) | ||
180 | _QSORT_SWAP (_tmp_ptr, _base, _hold); | ||
181 | |||
182 | /* Insertion sort, running from left-hand-side | ||
183 | * up to right-hand-side. */ | ||
184 | |||
185 | _run_ptr = _base + 1; | ||
186 | while (++_run_ptr <= _end_ptr) { | ||
187 | _tmp_ptr = _run_ptr - 1; | ||
188 | while (QSORT_LT ((CST)(_run_ptr), (CST)(_tmp_ptr))) | ||
189 | --_tmp_ptr; | ||
190 | |||
191 | ++_tmp_ptr; | ||
192 | if (_tmp_ptr != _run_ptr) { | ||
193 | QSORT_TYPE *_trav = _run_ptr + 1; | ||
194 | while (--_trav >= _run_ptr) { | ||
195 | QSORT_TYPE *_hi; QSORT_TYPE *_lo; | ||
196 | _hold = *_trav; | ||
197 | |||
198 | for (_hi = _lo = _trav; --_lo >= _tmp_ptr; _hi = _lo) | ||
199 | *_hi = *_lo; | ||
200 | *_hi = _hold; | ||
201 | } | ||
202 | } | ||
203 | } | ||
204 | } | ||
205 | } | ||
206 | |||
207 | #endif | ||