summaryrefslogtreecommitdiff
path: root/src/stable/md5.cpp
blob: c1d993f602c5520c75c6eb1b92973a48211f813a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*
 * Copyright (C) 2007-2012 Xagasoft, All rights reserved.
 *
 * This file is part of the libbu++ library and is released under the
 * terms of the license contained in the file LICENSE.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "bu/md5.h"
#include "bu/stream.h"

#ifdef SYSTEM_BIG_ENDIAN
# define toLittleEndian( a, b ) _toLittleEndian( a, b )
#else
# define toLittleEndian( a, b ) (void)0
#endif

Bu::Md5::Md5()
{
	reset();
}

Bu::Md5::~Md5()
{
}

void Bu::Md5::reset()
{
	// These are the magic seed numbers...

	sum[0] = 0x67452301U;
	sum[1] = 0xEFCDAB89U;
	sum[2] = 0x98BADCFEU;
	sum[3] = 0x10325476U;

	uBits[0] = 0;
	uBits[1] = 0;
}

void Bu::Md5::setSalt( const Bu::String & /*sSalt*/ )
{
}

void Bu::Md5::addData( const void *sVData, int iSize )
{
	const char *sData = (const char *)sVData;
	uint32_t t;

	t = uBits[0];
	if( (uBits[0] = t + ((uint32_t)iSize << 3)) < t )
		uBits[1]++;
	uBits[1] += iSize >> 29;

	t = (t >> 3) & 0x3f;	/* How many bytes we have buffered */

	/* Handle any leading odd-sized chunks */
	if( t )
	{
		unsigned char *p = (unsigned char *) inbuf + t;

		t = 64 - t;
		if( (uint32_t)iSize < t ) {
			memcpy( p, sData, iSize );
			return;
		}
		memcpy( p, sData, t );
		toLittleEndian( inbuf, 16 );
		compBlock( sum, (uint32_t *)inbuf );
		sData += t;
		iSize -= t;
	}

	/* Process data in 64-byte chunks */
	while( iSize >= 64 )
	{
		memcpy( inbuf, sData, 64 );
		toLittleEndian( inbuf, 16 );
		compBlock( sum, (uint32_t *)inbuf );
		sData += 64;
		iSize -= 64;
	}

	/* Handle any remaining bytes of data. */
	memcpy( inbuf, sData, iSize );
}

Bu::String Bu::Md5::getResult()
{
	uint32_t lsum[4];
	compCap( lsum );
	return Bu::String( (const char *)lsum, 4*4 );
}

void Bu::Md5::writeResult( Bu::Stream &sOut )
{
	uint32_t lsum[4];
	compCap( lsum );
	sOut.write( lsum, 4*4 );
}

void Bu::Md5::compCap( uint32_t *sumout )
{
	uint8_t tmpbuf[64];
	memcpy( sumout, sum, 4*4 );
	memcpy( tmpbuf, inbuf, 64 );

	uint32_t count;
	uint8_t *p;

	/* Compute number of bytes mod 64 */
	count = (uBits[0] >> 3) & 0x3F;

	/* Set the first char of padding to 0x80.  This is safe since there is
	   always at least one byte free */
	p = tmpbuf + count;
	*p++ = 0x80;

	/* Bytes of padding needed to make 64 bytes */
	count = 64 - 1 - count;

	/* Pad out to 56 mod 64 */
	if (count < 8) {
		/* Two lots of padding:  Pad the first block to 64 bytes */
		memset( p, 0, count );
		toLittleEndian( tmpbuf, 16 );
		compBlock( sumout, (uint32_t *)tmpbuf );

		/* Now fill the next block with 56 bytes */
		memset( tmpbuf, 0, 56);
	} else {
		/* Pad block to 56 bytes */
		memset( p, 0, count - 8);
	}
	toLittleEndian( tmpbuf, 14 );

	/* Append length in bits and transform */
	((uint32_t *) tmpbuf)[14] = uBits[0];
	((uint32_t *) tmpbuf)[15] = uBits[1];

	compBlock( sumout, (uint32_t *)tmpbuf );
	toLittleEndian((unsigned char *)sumout, 4);
}

#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))

/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )

void Bu::Md5::compBlock( uint32_t *lsum, uint32_t *x )
{
	register uint32_t a, b, c, d;
	a = lsum[0];
	b = lsum[1];
	c = lsum[2];
	d = lsum[3];

    MD5STEP(F1, a, b, c, d, x[0] + 0xd76aa478, 7);
    MD5STEP(F1, d, a, b, c, x[1] + 0xe8c7b756, 12);
    MD5STEP(F1, c, d, a, b, x[2] + 0x242070db, 17);
    MD5STEP(F1, b, c, d, a, x[3] + 0xc1bdceee, 22);
    MD5STEP(F1, a, b, c, d, x[4] + 0xf57c0faf, 7);
    MD5STEP(F1, d, a, b, c, x[5] + 0x4787c62a, 12);
    MD5STEP(F1, c, d, a, b, x[6] + 0xa8304613, 17);
    MD5STEP(F1, b, c, d, a, x[7] + 0xfd469501, 22);
    MD5STEP(F1, a, b, c, d, x[8] + 0x698098d8, 7);
    MD5STEP(F1, d, a, b, c, x[9] + 0x8b44f7af, 12);
    MD5STEP(F1, c, d, a, b, x[10] + 0xffff5bb1, 17);
    MD5STEP(F1, b, c, d, a, x[11] + 0x895cd7be, 22);
    MD5STEP(F1, a, b, c, d, x[12] + 0x6b901122, 7);
    MD5STEP(F1, d, a, b, c, x[13] + 0xfd987193, 12);
    MD5STEP(F1, c, d, a, b, x[14] + 0xa679438e, 17);
    MD5STEP(F1, b, c, d, a, x[15] + 0x49b40821, 22);

    MD5STEP(F2, a, b, c, d, x[1] + 0xf61e2562, 5);
    MD5STEP(F2, d, a, b, c, x[6] + 0xc040b340, 9);
    MD5STEP(F2, c, d, a, b, x[11] + 0x265e5a51, 14);
    MD5STEP(F2, b, c, d, a, x[0] + 0xe9b6c7aa, 20);
    MD5STEP(F2, a, b, c, d, x[5] + 0xd62f105d, 5);
    MD5STEP(F2, d, a, b, c, x[10] + 0x02441453, 9);
    MD5STEP(F2, c, d, a, b, x[15] + 0xd8a1e681, 14);
    MD5STEP(F2, b, c, d, a, x[4] + 0xe7d3fbc8, 20);
    MD5STEP(F2, a, b, c, d, x[9] + 0x21e1cde6, 5);
    MD5STEP(F2, d, a, b, c, x[14] + 0xc33707d6, 9);
    MD5STEP(F2, c, d, a, b, x[3] + 0xf4d50d87, 14);
    MD5STEP(F2, b, c, d, a, x[8] + 0x455a14ed, 20);
    MD5STEP(F2, a, b, c, d, x[13] + 0xa9e3e905, 5);
    MD5STEP(F2, d, a, b, c, x[2] + 0xfcefa3f8, 9);
    MD5STEP(F2, c, d, a, b, x[7] + 0x676f02d9, 14);
    MD5STEP(F2, b, c, d, a, x[12] + 0x8d2a4c8a, 20);

    MD5STEP(F3, a, b, c, d, x[5] + 0xfffa3942, 4);
    MD5STEP(F3, d, a, b, c, x[8] + 0x8771f681, 11);
    MD5STEP(F3, c, d, a, b, x[11] + 0x6d9d6122, 16);
    MD5STEP(F3, b, c, d, a, x[14] + 0xfde5380c, 23);
    MD5STEP(F3, a, b, c, d, x[1] + 0xa4beea44, 4);
    MD5STEP(F3, d, a, b, c, x[4] + 0x4bdecfa9, 11);
    MD5STEP(F3, c, d, a, b, x[7] + 0xf6bb4b60, 16);
    MD5STEP(F3, b, c, d, a, x[10] + 0xbebfbc70, 23);
    MD5STEP(F3, a, b, c, d, x[13] + 0x289b7ec6, 4);
    MD5STEP(F3, d, a, b, c, x[0] + 0xeaa127fa, 11);
    MD5STEP(F3, c, d, a, b, x[3] + 0xd4ef3085, 16);
    MD5STEP(F3, b, c, d, a, x[6] + 0x04881d05, 23);
    MD5STEP(F3, a, b, c, d, x[9] + 0xd9d4d039, 4);
    MD5STEP(F3, d, a, b, c, x[12] + 0xe6db99e5, 11);
    MD5STEP(F3, c, d, a, b, x[15] + 0x1fa27cf8, 16);
    MD5STEP(F3, b, c, d, a, x[2] + 0xc4ac5665, 23);

    MD5STEP(F4, a, b, c, d, x[0] + 0xf4292244, 6);
    MD5STEP(F4, d, a, b, c, x[7] + 0x432aff97, 10);
    MD5STEP(F4, c, d, a, b, x[14] + 0xab9423a7, 15);
    MD5STEP(F4, b, c, d, a, x[5] + 0xfc93a039, 21);
    MD5STEP(F4, a, b, c, d, x[12] + 0x655b59c3, 6);
    MD5STEP(F4, d, a, b, c, x[3] + 0x8f0ccc92, 10);
    MD5STEP(F4, c, d, a, b, x[10] + 0xffeff47d, 15);
    MD5STEP(F4, b, c, d, a, x[1] + 0x85845dd1, 21);
    MD5STEP(F4, a, b, c, d, x[8] + 0x6fa87e4f, 6);
    MD5STEP(F4, d, a, b, c, x[15] + 0xfe2ce6e0, 10);
    MD5STEP(F4, c, d, a, b, x[6] + 0xa3014314, 15);
    MD5STEP(F4, b, c, d, a, x[13] + 0x4e0811a1, 21);
    MD5STEP(F4, a, b, c, d, x[4] + 0xf7537e82, 6);
    MD5STEP(F4, d, a, b, c, x[11] + 0xbd3af235, 10);
    MD5STEP(F4, c, d, a, b, x[2] + 0x2ad7d2bb, 15);
    MD5STEP(F4, b, c, d, a, x[9] + 0xeb86d391, 21);

	lsum[0] += a;
	lsum[1] += b;
	lsum[2] += c;
	lsum[3] += d;
}

void Bu::Md5::_toLittleEndian( uint8_t *buf, uint32_t count )
{
	uint32_t t;
	do {
		t = (uint32_t) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
			((unsigned) buf[1] << 8 | buf[0]);
		*(uint32_t *) buf = t;
		buf += 4;
	} while( --count );
}