1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
/*
* Copyright (C) 2007-2011 Xagasoft, All rights reserved.
*
* This file is part of the libbu++ library and is released under the
* terms of the license contained in the file LICENSE.
*/
#ifndef BU_UTF_STRING_H
#define BU_UTF_STRING_H
#include <stdint.h>
#include "bu/array.h"
namespace Bu
{
class String;
class Stream;
/**
* UtfChar isn't actually a character, unicode specifies "code points" not
* characters. The main reason for this is that not all code points define
* usable characters. Some control text directionality, some apply
* properties to other code points which are characters. However, most of
* these distinctions are only important when implementing displays that
* comply with the Unicode standard fully.
*/
typedef uint32_t UtfChar;
/**
* A unicode string. This class represents a string of unicode code points.
* Every character in unicode can be represented with 21 bits, but we don't
* have a datatype that's 24 bits long, so we return all code points as a
* 32 bit unsigned value represented by Bu::UtfChar. However, the UtfString
* class, for efficiency purposes doesn't store 32 bit values internally.
* It represents all code points in the native utf16 encodeng. This means
* that it may be very difficult to quickly determine the length of a
* UtfString in code points. Unlike many Unicode handling systems, this
* one actually works with complete code points. When using this class you
* don't ever have to know about the inner workings of the different
* encoding schemes. All of the data is dealt with as whole code points.
*
* As an aside, this means that when encoding a UtfString to a Utf16
* encoding that matches your archetecture this operation will be very
* fast since it will effectively be a raw dump of the internal data
* structures. However, it is highly reccomended that you DO NOT use the
* little endian encodings if you can possibly avoid it. They are not
* reccomended by the Unicode Consortium and are mainly supported as a
* means of communicating with other systems that encode their data
* incorrectly. That said, whenever UtfString encodes the contained string
* it always includes a BOM at the begining (the byte order marker) so that
* proper byte order can be easily determined by the program reading the
* data.
*
*@todo Investigate http://www.unicode.org/reports/tr6/ for compression.
*/
class UtfString
{
public:
enum Encoding
{
Utf8,
Utf16,
Utf16be,
Utf16le,
Utf32,
Utf32be,
Utf32le,
Ucs2,
Ucs4,
GuessEncoding
};
UtfString();
UtfString( const Bu::String &sInput, Encoding eEnc=Utf8 );
virtual ~UtfString();
class iterator
{
private:
iterator( UtfString *pSrc, int iCodePos ) :
pSrc( pSrc ), iCodePos( iCodePos )
{
}
public:
iterator() :
pSrc( NULL ), iCodePos( 0 )
{
}
UtfChar operator*()
{
if( !pSrc )
throw Bu::ExceptionBase("invalid UtfString::iterator dereferenced.");
return pSrc->nextChar( iCodePos );
}
private:
UtfString *pSrc;
int iCodePos;
};
/**
* Append a UtfChar (A unicode code point) to the string. This can be
* any valid code point, and is just the value of the code point, no
* encoding necessary.
*/
void append( UtfChar ch );
/**
* Set the value of the entire string based on the given input and
* encoding. The default encoding is Utf8, which is compatible with
* 7-bit ascii, so it's a great choice for setting UtfStrings from
* string literals in code.
*/
void set( const Bu::String &sInput, Encoding eEnc=Utf8 );
/**
* This encodes the UtfString in the given encoding and outputs it to
* the provided stream. all Utf16 and Utf32 encodings will have the
* correct BOM (byte order marker) at the begining.
*/
void write( Bu::Stream &sOut, Encoding eEnc=Utf8 );
/**
* This encodes the UtfString in the given encoding and returns it as
* a binary Bu::String. Like write, this also includes the proper BOM
* at the begining.
*/
Bu::String get( Encoding eEnc=Utf8 );
void debug();
/**
* This may or may not stick around, given an index, this returns a
* codepoint, however there isn't necesarilly a 1:1 ratio between
* indexes and code points.
*/
UtfChar get( int iIndex );
/**
* This is what to use if you want to iterate through a section of the
* UtfString and you want to use a numerical index. In most cases it
* will be much easier to use an iterator, though. Given an index this
* will return the codepoint at that position and increment iIndex an
* appropriate amount for it to point to the next code point.
*/
UtfChar nextChar( int &iIndex );
private:
void append16( uint16_t i ) { aData.append( i ); }
void setUtf8( const Bu::String &sInput );
void setUtf16( const Bu::String &sInput );
void setUtf16be( const Bu::String &sInput );
void setUtf16le( const Bu::String &sInput );
void setUtf32( const Bu::String &sInput );
void setUtf32be( const Bu::String &sInput );
void setUtf32le( const Bu::String &sInput );
void writeUtf8( Bu::Stream &sOut );
void writeUtf16be( Bu::Stream &sOut );
void writeUtf16le( Bu::Stream &sOut );
void writeUtf32be( Bu::Stream &sOut );
void writeUtf32le( Bu::Stream &sOut );
private:
Bu::Array<uint16_t> aData;
int iRawLen;
int iCharLen;
};
};
#endif
|