1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
|
#include "genetic/explicitsimulation.h"
#include "genetic/operator.h"
#include "genetic/fitnessfunction.h"
#include "genetic/phenotype.h"
#include <bu/random.h>
#include <bu/sio.h>
#include <bu/mutexlocker.h>
#include <stdlib.h>
using namespace Bu;
Genetic::ExplicitSimulation::ExplicitSimulation( Genetic::Operator *pOper,
Genetic::FitnessFunction *pFunc, int iThreads, int iPopSize,
float fKeep, float fRandom, bool bKeepBest ) :
pOper( pOper ),
iPopSize( iPopSize ),
fKeep( fKeep ),
fRandom( fRandom ),
bKeepBest( bKeepBest ),
bRunning( true )
{
for( int j = 0; j < iPopSize; j++ )
{
xPop.addPhenotype( pOper->random() );
}
if( iThreads < 1 )
iThreads = 1;
int iId = 0;
lProcessor.append( new Processor( *this, pFunc, qWork, iId++ ) );
while( lProcessor.getSize() < iThreads )
lProcessor.append(
new Processor( *this, pFunc->clone(), qWork, iId++ )
);
for( ProcessorList::iterator i = lProcessor.begin(); i; i++ )
(*i)->start();
updateFitness();
}
Genetic::ExplicitSimulation::~ExplicitSimulation()
{
delete pOper;
setRunning( false );
qWork.unblockAll();
for( ProcessorList::iterator i = lProcessor.begin(); i; i++ )
{
(*i)->join();
delete *i;
}
}
void Genetic::ExplicitSimulation::timestep()
{
PhenotypeList lNew;
int iChildren = iPopSize*(1.0-fKeep-fRandom);
// Create children
for( int j = 0; j < iChildren; j++ )
{
PhenotypeList lParents;
for( int k = 0; k < pOper->parentCount(); k++ )
lParents.append( xPop.getPhenotype( selectWeighted() ) );
lNew.append( pOper->mate( lParents ) );
}
// Select phenotypes for keeping
int iKeep = iPopSize*fKeep;
FitnessHash hTempFitness;
for( int j = 0; j < iKeep; j++ )
{
Genetic::PhenotypeId id = selectWeighted();
mFitness.lock();
lNew.append( xPop.takePhenotype( id ) );
hTempFitness.insert( id, hFitness.get( id ) );
hFitness.erase( id );
dTotalFitness -= hTempFitness.get( id );
mFitness.unlock();
}
mFitness.lock();
if( bKeepBest && hFitness.has( uMaxFitness ) )
{
lNew.append( xPop.takePhenotype( uMaxFitness ) );
hTempFitness.insert( uMaxFitness, hFitness.get( uMaxFitness ) );
hFitness.erase( uMaxFitness );
dTotalFitness -= hTempFitness.get( uMaxFitness );
}
mFitness.unlock();
// Fill in the remainder with random phenotypes
while( lNew.getSize() < iPopSize )
{
lNew.append( pOper->random() );
}
// Refill the population
mFitness.lock();
hFitness = hTempFitness;
mFitness.unlock();
xPop.clear();
xPop.timestep();
for( PhenotypeList::iterator i = lNew.begin(); i; i++ )
{
xPop.addPhenotype( *i );
}
updateFitness();
}
Genetic::PhenotypeId Genetic::ExplicitSimulation::selectWeighted()
{
Bu::MutexLocker ml( mFitness );
double dSel = Bu::Random::randNorm()*dTotalFitness;
double dRun = 0.0;
for( FitnessHash::iterator i = hFitness.begin(); i; i++ )
{
dRun += *i;
if( dSel < dRun )
return i.getKey();
}
sio << "Genetic::ExplicitSimulation::selectWeighted() - failed, picked max"
<< sio.nl;
sio << " " << dMinFitness << " - " << dMaxFitness << " -- " << dTotalFitness << " > " << dRun << " > " << dSel << sio.nl;
abort();
return uMaxFitness;
}
void Genetic::ExplicitSimulation::updateFitness()
{
mFitness.lock();
dMinFitness = -1.0;
dTotalFitness = 0.0;
mFitness.unlock();
cWorkDone.lock();
iWorkDone = xPop.getSize();
cWorkDone.unlock();
for( Population::iterator i = xPop.begin(); i; i++ )
{
mFitness.lock();
bool bHas = hFitness.has( i.getKey() );
mFitness.unlock();
if( bHas )
{
setFitness( i.getKey(), hFitness.get( i.getKey() ) );
cWorkDone.lock();
iWorkDone--;
cWorkDone.unlock();
}
else
{
qWork.enqueue( *i );
}
}
cWorkDone.lock();
if( iWorkDone == 0 )
{
cWorkDone.unlock();
return;
}
while( iWorkDone > 0 )
cWorkDone.wait();
cWorkDone.unlock();
}
void Genetic::ExplicitSimulation::setFitness( Genetic::PhenotypeId id,
double dFitness )
{
Bu::MutexLocker ml( mFitness );
if( dFitness < 0.0 )
dFitness = 0.0;
hFitness.insert( id, dFitness );
dTotalFitness += dFitness;
if( dMinFitness < 0.0 )
{
dMinFitness = dMaxFitness = dFitness;
uMaxFitness = id;
}
else if( dMinFitness > dFitness )
{
dMinFitness = dFitness;
}
else if( dMaxFitness < dFitness )
{
dMaxFitness = dFitness;
uMaxFitness = id;
}
}
void Genetic::ExplicitSimulation::workDone()
{
cWorkDone.lock();
iWorkDone--;
if( iWorkDone == 0 )
cWorkDone.signal();
cWorkDone.unlock();
}
void Genetic::ExplicitSimulation::setRunning( bool b )
{
Bu::MutexLocker ml( mRunning );
bRunning = b;
}
bool Genetic::ExplicitSimulation::isRunning()
{
Bu::MutexLocker ml( mRunning );
return bRunning;
}
Genetic::ExplicitSimulation::Processor::Processor(
Genetic::ExplicitSimulation &rSim,
Genetic::FitnessFunction *pFunc,
Genetic::ExplicitSimulation::WorkQueue &rqWork,
int iId ) :
rSim( rSim ),
pFunc( pFunc ),
rqWork( rqWork ),
iId( iId )
{
}
Genetic::ExplicitSimulation::Processor::~Processor()
{
delete pFunc;
}
void Genetic::ExplicitSimulation::Processor::run()
{
while( rSim.isRunning() )
{
Genetic::Phenotype *pPhen = rqWork.dequeue( true );
if( pPhen == NULL )
continue;
double dFitness = (*pFunc)( pPhen );
rSim.setFitness( pPhen->getId(), dFitness );
rSim.workDone();
}
}
|