blob: 0ec5ddea9acee13fe2032e0dccbf48f3392a1bd1 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
|
#ifndef NEURAL_ROW_H
#define NEURAL_ROW_H
#include "neural/container.h"
namespace Neural
{
template<typename sigtype>
class Row : public Container<sigtype>
{
public:
//typedef Bu::List<Neural::Node<sigtype> *> NodeList;
Row() :
iInputs( 0 ),
iOutputs( 0 ),
iWeights( 0 ),
iBiases( 0 )
{
}
virtual ~Row()
{
}
virtual void finalize( int iNumInputs )
{
iInputs = iNumInputs;
iOutputs = 0;
iWeights = 0;
iBiases = 0;
for( typename Container<sigtype>::NodeList::iterator i =
Container<sigtype>::getNodeList().begin(); i; i++ )
{
(*i)->finalize( iInputs );
iOutputs += (*i)->getNumOutputs();
iWeights += (*i)->getNumWeights();
iBiases += (*i)->getNumBiases();
}
}
virtual void process( sigtype *aInput, sigtype *aOutput )
{
int iOutputOffset = 0;
for( typename Container<sigtype>::NodeList::iterator i =
Container<sigtype>::getNodeList().begin(); i; i++ )
{
(*i)->process( aInput, aOutput+iOutputOffset );
iOutputOffset += (*i)->getNumOutputs();
}
}
virtual int getNumInputs() const
{
return iInputs;
}
virtual int getNumOutputs() const
{
return iOutputs;
}
virtual int getNumWeights() const
{
return iWeights;
}
virtual int getNumBiases() const
{
return iBiases;
}
private:
int iInputs;
int iOutputs;
int iWeights;
int iBiases;
};
};
#endif
|