diff options
| author | Mike Buland <eichlan@xagasoft.com> | 2007-07-03 00:28:59 +0000 |
|---|---|---|
| committer | Mike Buland <eichlan@xagasoft.com> | 2007-07-03 00:28:59 +0000 |
| commit | ac517a2b7625e0aa0862679e961c6349f859ea3b (patch) | |
| tree | e3e27a6b9bd5e2be6150088495c91fc91786ad9d /src/old/tqsort.h | |
| parent | f8d4301e9fa4f3709258505941e37fab2eadadc6 (diff) | |
| parent | bd865cee5f89116c1f054cd0e5c275e97c2d0a9b (diff) | |
| download | libbu++-ac517a2b7625e0aa0862679e961c6349f859ea3b.tar.gz libbu++-ac517a2b7625e0aa0862679e961c6349f859ea3b.tar.bz2 libbu++-ac517a2b7625e0aa0862679e961c6349f859ea3b.tar.xz libbu++-ac517a2b7625e0aa0862679e961c6349f859ea3b.zip | |
The reorg is being put in trunk, I think it's ready. Now we just get to find
out how many applications won't work anymore :)
Diffstat (limited to 'src/old/tqsort.h')
| -rw-r--r-- | src/old/tqsort.h | 207 |
1 files changed, 207 insertions, 0 deletions
diff --git a/src/old/tqsort.h b/src/old/tqsort.h new file mode 100644 index 0000000..c836b4f --- /dev/null +++ b/src/old/tqsort.h | |||
| @@ -0,0 +1,207 @@ | |||
| 1 | #ifndef T_QSORT_H | ||
| 2 | #define T_QSORT_H | ||
| 3 | |||
| 4 | #define _QSORT_SWAP(a, b, t) ((void)((t = *a), (*a = *b), (*b = t))) | ||
| 5 | |||
| 6 | /* Discontinue quicksort algorithm when partition gets below this size. | ||
| 7 | This particular magic number was chosen to work best on a Sun 4/260. */ | ||
| 8 | #define _QSORT_MAX_THRESH 4 | ||
| 9 | |||
| 10 | /* Stack node declarations used to store unfulfilled partition obligations | ||
| 11 | * (inlined in QSORT). | ||
| 12 | typedef struct { | ||
| 13 | QSORT_TYPE *_lo, *_hi; | ||
| 14 | } qsort_stack_node; | ||
| 15 | */ | ||
| 16 | |||
| 17 | /* The next 4 #defines implement a very fast in-line stack abstraction. */ | ||
| 18 | /* The stack needs log (total_elements) entries (we could even subtract | ||
| 19 | log(MAX_THRESH)). Since total_elements has type unsigned, we get as | ||
| 20 | upper bound for log (total_elements): | ||
| 21 | bits per byte (CHAR_BIT) * sizeof(unsigned). */ | ||
| 22 | #define _QSORT_STACK_SIZE (8 * sizeof(unsigned)) | ||
| 23 | #define _QSORT_PUSH(top, low, high) \ | ||
| 24 | (((top->_lo = (low)), (top->_hi = (high)), ++top)) | ||
| 25 | #define _QSORT_POP(low, high, top) \ | ||
| 26 | ((--top, (low = top->_lo), (high = top->_hi))) | ||
| 27 | #define _QSORT_STACK_NOT_EMPTY (_stack < _top) | ||
| 28 | |||
| 29 | |||
| 30 | /* Order size using quicksort. This implementation incorporates | ||
| 31 | four optimizations discussed in Sedgewick: | ||
| 32 | |||
| 33 | 1. Non-recursive, using an explicit stack of pointer that store the | ||
| 34 | next array partition to sort. To save time, this maximum amount | ||
| 35 | of space required to store an array of SIZE_MAX is allocated on the | ||
| 36 | stack. Assuming a 32-bit (64 bit) integer for size_t, this needs | ||
| 37 | only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes). | ||
| 38 | Pretty cheap, actually. | ||
| 39 | |||
| 40 | 2. Chose the pivot element using a median-of-three decision tree. | ||
| 41 | This reduces the probability of selecting a bad pivot value and | ||
| 42 | eliminates certain extraneous comparisons. | ||
| 43 | |||
| 44 | 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving | ||
| 45 | insertion sort to order the MAX_THRESH items within each partition. | ||
| 46 | This is a big win, since insertion sort is faster for small, mostly | ||
| 47 | sorted array segments. | ||
| 48 | |||
| 49 | 4. The larger of the two sub-partitions is always pushed onto the | ||
| 50 | stack first, with the algorithm then concentrating on the | ||
| 51 | smaller partition. This *guarantees* no more than log (total_elems) | ||
| 52 | stack size is needed (actually O(1) in this case)! */ | ||
| 53 | |||
| 54 | /* The main code starts here... */ | ||
| 55 | |||
| 56 | template<typename QSORT_TYPE, typename QSORT_LTT, typename CST> | ||
| 57 | void tqsort( QSORT_TYPE *QSORT_BASE, int QSORT_NELT ) | ||
| 58 | { | ||
| 59 | QSORT_LTT QSORT_LT; | ||
| 60 | QSORT_TYPE *const _base = (QSORT_BASE); | ||
| 61 | const unsigned _elems = (QSORT_NELT); | ||
| 62 | QSORT_TYPE _hold; | ||
| 63 | |||
| 64 | /* Don't declare two variables of type QSORT_TYPE in a single | ||
| 65 | * statement: eg `TYPE a, b;', in case if TYPE is a pointer, | ||
| 66 | * expands to `type* a, b;' wich isn't what we want. | ||
| 67 | */ | ||
| 68 | |||
| 69 | if (_elems > _QSORT_MAX_THRESH) { | ||
| 70 | QSORT_TYPE *_lo = _base; | ||
| 71 | QSORT_TYPE *_hi = _lo + _elems - 1; | ||
| 72 | struct { | ||
| 73 | QSORT_TYPE *_hi; QSORT_TYPE *_lo; | ||
| 74 | } _stack[_QSORT_STACK_SIZE], *_top = _stack + 1; | ||
| 75 | |||
| 76 | while (_QSORT_STACK_NOT_EMPTY) { | ||
| 77 | QSORT_TYPE *_left_ptr; QSORT_TYPE *_right_ptr; | ||
| 78 | |||
| 79 | /* Select median value from among LO, MID, and HI. Rearrange | ||
| 80 | LO and HI so the three values are sorted. This lowers the | ||
| 81 | probability of picking a pathological pivot value and | ||
| 82 | skips a comparison for both the LEFT_PTR and RIGHT_PTR in | ||
| 83 | the while loops. */ | ||
| 84 | |||
| 85 | QSORT_TYPE *_mid = _lo + ((_hi - _lo) >> 1); | ||
| 86 | |||
| 87 | if (QSORT_LT ((CST)(_mid), (CST)(_lo))) | ||
| 88 | _QSORT_SWAP (_mid, _lo, _hold); | ||
| 89 | if (QSORT_LT ((CST)(_hi), (CST)(_mid))) | ||
| 90 | _QSORT_SWAP (_mid, _hi, _hold); | ||
| 91 | else | ||
| 92 | goto _jump_over; | ||
| 93 | if (QSORT_LT ((CST)(_mid), (CST)(_lo))) | ||
| 94 | _QSORT_SWAP (_mid, _lo, _hold); | ||
| 95 | _jump_over:; | ||
| 96 | |||
| 97 | _left_ptr = _lo + 1; | ||
| 98 | _right_ptr = _hi - 1; | ||
| 99 | |||
| 100 | /* Here's the famous ``collapse the walls'' section of quicksort. | ||
| 101 | Gotta like those tight inner loops! They are the main reason | ||
| 102 | that this algorithm runs much faster than others. */ | ||
| 103 | do { | ||
| 104 | while (QSORT_LT ((CST)(_left_ptr), (CST)(_mid))) | ||
| 105 | ++_left_ptr; | ||
| 106 | |||
| 107 | while (QSORT_LT ((CST)(_mid), (CST)(_right_ptr))) | ||
| 108 | --_right_ptr; | ||
| 109 | |||
| 110 | if (_left_ptr < _right_ptr) { | ||
| 111 | _QSORT_SWAP (_left_ptr, _right_ptr, _hold); | ||
| 112 | if (_mid == _left_ptr) | ||
| 113 | _mid = _right_ptr; | ||
| 114 | else if (_mid == _right_ptr) | ||
| 115 | _mid = _left_ptr; | ||
| 116 | ++_left_ptr; | ||
| 117 | --_right_ptr; | ||
| 118 | } | ||
| 119 | else if (_left_ptr == _right_ptr) { | ||
| 120 | ++_left_ptr; | ||
| 121 | --_right_ptr; | ||
| 122 | break; | ||
| 123 | } | ||
| 124 | } while (_left_ptr <= _right_ptr); | ||
| 125 | |||
| 126 | /* Set up pointers for next iteration. First determine whether | ||
| 127 | left and right partitions are below the threshold size. If so, | ||
| 128 | ignore one or both. Otherwise, push the larger partition's | ||
| 129 | bounds on the stack and continue sorting the smaller one. */ | ||
| 130 | |||
| 131 | if (_right_ptr - _lo <= _QSORT_MAX_THRESH) { | ||
| 132 | if (_hi - _left_ptr <= _QSORT_MAX_THRESH) | ||
| 133 | /* Ignore both small partitions. */ | ||
| 134 | _QSORT_POP (_lo, _hi, _top); | ||
| 135 | else | ||
| 136 | /* Ignore small left partition. */ | ||
| 137 | _lo = _left_ptr; | ||
| 138 | } | ||
| 139 | else if (_hi - _left_ptr <= _QSORT_MAX_THRESH) | ||
| 140 | /* Ignore small right partition. */ | ||
| 141 | _hi = _right_ptr; | ||
| 142 | else if (_right_ptr - _lo > _hi - _left_ptr) { | ||
| 143 | /* Push larger left partition indices. */ | ||
| 144 | _QSORT_PUSH (_top, _lo, _right_ptr); | ||
| 145 | _lo = _left_ptr; | ||
| 146 | } | ||
| 147 | else { | ||
| 148 | /* Push larger right partition indices. */ | ||
| 149 | _QSORT_PUSH (_top, _left_ptr, _hi); | ||
| 150 | _hi = _right_ptr; | ||
| 151 | } | ||
| 152 | } | ||
| 153 | } | ||
| 154 | |||
| 155 | /* Once the BASE array is partially sorted by quicksort the rest | ||
| 156 | is completely sorted using insertion sort, since this is efficient | ||
| 157 | for partitions below MAX_THRESH size. BASE points to the | ||
| 158 | beginning of the array to sort, and END_PTR points at the very | ||
| 159 | last element in the array (*not* one beyond it!). */ | ||
| 160 | |||
| 161 | { | ||
| 162 | QSORT_TYPE *const _end_ptr = _base + _elems - 1; | ||
| 163 | QSORT_TYPE *_tmp_ptr = _base; | ||
| 164 | register QSORT_TYPE *_run_ptr; | ||
| 165 | QSORT_TYPE *_thresh; | ||
| 166 | |||
| 167 | _thresh = _base + _QSORT_MAX_THRESH; | ||
| 168 | if (_thresh > _end_ptr) | ||
| 169 | _thresh = _end_ptr; | ||
| 170 | |||
| 171 | /* Find smallest element in first threshold and place it at the | ||
| 172 | array's beginning. This is the smallest array element, | ||
| 173 | and the operation speeds up insertion sort's inner loop. */ | ||
| 174 | |||
| 175 | for (_run_ptr = _tmp_ptr + 1; _run_ptr <= _thresh; ++_run_ptr) | ||
| 176 | if (QSORT_LT ((CST)(_run_ptr), (CST)(_tmp_ptr))) | ||
| 177 | _tmp_ptr = _run_ptr; | ||
| 178 | |||
| 179 | if (_tmp_ptr != _base) | ||
| 180 | _QSORT_SWAP (_tmp_ptr, _base, _hold); | ||
| 181 | |||
| 182 | /* Insertion sort, running from left-hand-side | ||
| 183 | * up to right-hand-side. */ | ||
| 184 | |||
| 185 | _run_ptr = _base + 1; | ||
| 186 | while (++_run_ptr <= _end_ptr) { | ||
| 187 | _tmp_ptr = _run_ptr - 1; | ||
| 188 | while (QSORT_LT ((CST)(_run_ptr), (CST)(_tmp_ptr))) | ||
| 189 | --_tmp_ptr; | ||
| 190 | |||
| 191 | ++_tmp_ptr; | ||
| 192 | if (_tmp_ptr != _run_ptr) { | ||
| 193 | QSORT_TYPE *_trav = _run_ptr + 1; | ||
| 194 | while (--_trav >= _run_ptr) { | ||
| 195 | QSORT_TYPE *_hi; QSORT_TYPE *_lo; | ||
| 196 | _hold = *_trav; | ||
| 197 | |||
| 198 | for (_hi = _lo = _trav; --_lo >= _tmp_ptr; _hi = _lo) | ||
| 199 | *_hi = *_lo; | ||
| 200 | *_hi = _hold; | ||
| 201 | } | ||
| 202 | } | ||
| 203 | } | ||
| 204 | } | ||
| 205 | } | ||
| 206 | |||
| 207 | #endif | ||
