1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
|
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "sha1.h"
Sha1::Sha1() :
H0( 0x67452301 ),
H1( 0xefcdab89 ),
H2( 0x98badcfe ),
H3( 0x10325476 ),
H4( 0xc3d2e1f0 ),
unprocessedBytes( 0 ),
size( 0 )
{
}
Sha1::~Sha1()
{
}
void Sha1::process()
{
int t;
uint32_t a, b, c, d, e, K, f, W[80];
// starting values
a = H0;
b = H1;
c = H2;
d = H3;
e = H4;
// copy and expand the message block
for( t = 0; t < 16; t++ ) W[t] = (bytes[t*4] << 24)
+(bytes[t*4 + 1] << 16)
+(bytes[t*4 + 2] << 8)
+ bytes[t*4 + 3];
for(; t< 80; t++ ) W[t] = lrot( W[t-3]^W[t-8]^W[t-14]^W[t-16], 1 );
/* main loop */
uint32_t temp;
for( t = 0; t < 80; t++ )
{
if( t < 20 ) {
K = 0x5a827999;
f = (b & c) | ((~b) & d);
} else if( t < 40 ) {
K = 0x6ed9eba1;
f = b ^ c ^ d;
} else if( t < 60 ) {
K = 0x8f1bbcdc;
f = (b & c) | (b & d) | (c & d);
} else {
K = 0xca62c1d6;
f = b ^ c ^ d;
}
temp = lrot(a,5) + f + e + W[t] + K;
e = d;
d = c;
c = lrot(b,30);
b = a;
a = temp;
//printf( "t=%d %08x %08x %08x %08x %08x\n",t,a,b,c,d,e );
}
/* add variables */
H0 += a;
H1 += b;
H2 += c;
H3 += d;
H4 += e;
//printf( "Current: %08x %08x %08x %08x %08x\n",H0,H1,H2,H3,H4 );
/* all bytes have been processed */
unprocessedBytes = 0;
}
void Sha1::update( const char* data, int num )
{
// add these bytes to the running total
size += num;
// repeat until all data is processed
while( num > 0 )
{
// number of bytes required to complete block
int needed = 64 - unprocessedBytes;
// number of bytes to copy (use smaller of two)
int toCopy = (num < needed) ? num : needed;
// Copy the bytes
memcpy( bytes + unprocessedBytes, data, toCopy );
// Bytes have been copied
num -= toCopy;
data += toCopy;
unprocessedBytes += toCopy;
// there is a full block
if( unprocessedBytes == 64 ) process();
}
}
unsigned char* Sha1::getDigest()
{
// save the message size
uint32_t totalBitsL = size << 3;
uint32_t totalBitsH = size >> 29;
// add 0x80 to the message
update( "\x80", 1 );
unsigned char footer[64] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
// block has no room for 8-byte filesize, so finish it
if( unprocessedBytes > 56 )
update( (char*)footer, 64 - unprocessedBytes);
// how many zeros do we need
int neededZeros = 56 - unprocessedBytes;
// store file size (in bits) in big-endian format
toBigEndian( totalBitsH, footer + neededZeros );
toBigEndian( totalBitsL, footer + neededZeros + 4 );
// finish the final block
update( (char*)footer, neededZeros + 8 );
// allocate memory for the digest bytes
unsigned char* digest = new unsigned char[20];
// copy the digest bytes
toBigEndian( H0, digest );
toBigEndian( H1, digest + 4 );
toBigEndian( H2, digest + 8 );
toBigEndian( H3, digest + 12 );
toBigEndian( H4, digest + 16 );
// return the digest
return digest;
}
uint32_t Sha1::lrot( uint32_t x, int bits )
{
return (x<<bits) | (x>>(32 - bits));
};
void Sha1::toBigEndian( uint32_t num, unsigned char* byte )
{
byte[0] = (unsigned char)(num>>24);
byte[1] = (unsigned char)(num>>16);
byte[2] = (unsigned char)(num>>8);
byte[3] = (unsigned char)num;
}
|